

Contd... 2

8

10

UNIT - III

- 5 a. Obtain the optimum pressure ratio for minimum work in a two-stage compressor with perfect intercooling and deduce the equation for minimum work.
 - b. A single-cylinder, double-acting, reciprocating air compressor receives air at 1 bar; 1 7°C, compresses it to 6 bar according to the law PV^{1.25}= constant. The cylinder diameter is 300 mm. The average piston speed is 150 m/min at 100 rpm. Calculate the power required in kW for driving the compressor. Neglect clearance.
- 6 a. Define the volumetric efficiency of a single-stage reciprocating compressor and set up an expression for it in terms of pressure ratio and clearance ratio. The compression and 10 expansion curves follow the law $_{PV}{}^{n}$ = constant.
 - b. Single-acting, single-stage reciprocating air compressor of 250 mm bore and 350 mm stroke runs at 200 rpm. The suction and delivery pressures are 1 bar and 6 bar respectively. Calculate the theoretical power required to run the compressor under each of the following conditions of compression:

i) Isothermal ii) Polytropic n = 1.3 iii) Isentropic, $\gamma = 1.4$

Neglect the effect of clearance and also calculate isothermal efficiency in each of the above cases.

UNIT - IV

7 a.	Sketch and explain the vapour compression cycle on a T-S diagram and deduce an					
	expression for its COP.					
b.	Explain the effect of superheating and sub-cooling of liquid in a refrigeration system.					
8 a.	Write short notes on the following terms:					
	i) Refrigeration	ii) Refrigeration effect				
	iii) Ton of refrigeration	iv) Refrigerant				
b.	An ideal vapour compression system uses R-12 as the refrigerant. The system uses an					
	evaporation temperature of 0°C and a condenser temperature of 40°C. The capacity of the					
	system is 7 Ton of Refrigeration. Determine;					
	i) The mass flow rate of refrigerant	ii) Power required to run the compressor				

- i) The mass now rate of refrigerant ii) Tower required to run the compresso
- iii) Heat rejected in the condenser iv) COP of the system

Use the properties of R-12 from the table given below:

Temperature ^o C	Pressure	h_{f}	h_{g}	\mathbf{S}_{f}	\mathbf{S}_{g}
	bar	KJ/Kg	KJ/Kg	KJ/Kg K	KJ/Kg K
0	3.0 87	36.05	187.53	0.142	0.696
40	9.609	74.59	203.2	0.727	0.682

12

Contd... 3

UNIT - V

- 9 a. Explain the following:
 - i) The Morse test for determining the indicated power of a multi-cylinder engine
 - ii) Air-box method to determine air consumption
 - b. A two-stroke single cylinder engine runs at 2000 RPM and consumes 5 kg of fuel during a test trial of 15 minutes. The engine cooling is done with water circulation of 15 kg/min and inlet and exit temperatures of 27° C and 55° C respectively. The total air consumption is 150 kg and exhaust temperature is 420° C. Assume atmospheric temperature as 27° C. Specific heat of exhaust gases 1.25 kJ/kg.K and mechanical efficiency 90%. Determine brake power and draw heat balance sheet on per minute basis. Take brake torque 350N-m and calorific value of the fuel 42000 kJ/kg. A two-stroke single cylinder engine runs at 2000 RPM and consumes 5kg of fuel during a test trial of 15 minutes. The engine cooling is done with water circulation of 15 kg/min and inlet and exit temperatures of 27° C and 55° C respectively. The total air consumption is 150 kg and exhaust temperature is 420° C. Assume atmospheric temperature as 27°C. Specific heat of exhaust gases 1.25 kJ/kg.K and mechanical efficiency 90%. Determine brake power and draw heat balance sheet on per minute basis. Take brake torque 350N-m and calorific value of 15 kg/min and inlet and exit temperature is 420° C. Assume atmospheric temperature as 27°C. Specific heat of exhaust gases 1.25 kJ/kg.K and mechanical efficiency 90%. Determine brake power and draw heat balance sheet on per minute basis. Take brake torque 350N-m and calorific value of the fuel 42000 kJ/kg.
- 10 a. Write short notes on;
 - i) Rope Brake dynamometer
 - ii) Basic measurements for engine performance
 - iii) Willian's line method
 - iv) Indicated power, Brake power and Friction Power
 - v) Motoring Test

12