P18AU3	33			Рад	ge No	1	
	U.S.N						
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) Third Semester, B.E Automobile Engineering Semester End Examination; March / April - 2022 Thermodynamics							
Time: 3			Ма	<i>x. M</i>	arks:	100	
The Stud	<i>Course Outcomes</i> ents will be able to:						
CO1: De CO2: De CO3: De CO4: De CO5: Imp <u>Note</u> : I)	sign and Implement standard data structures like stack using recursion. sign and implement operations on linked list. velop programs to implement different queues. sign and implement different tree traversal techniques using iteration and r plement sorting and searching techniques. PART - A is compulsory. Two marks for each question.						
	PART - B : Answer any <u>Two</u> sub questions (from a, b, c) for Maximum of 18 Assume suitably missing data if any. IV) Use of Thermodynamic data and l				nit.		
Q. No.	Questions		Marks	BLs	COs	POs	
	I : PART - A		10				
I a.	Define Zeroth law of thermodynamics.		2	L1	CO1	PO1	
b.	State first law of thermodynamics for cyclic and non-cyclic processe	es.	2	L2	CO2	PO1	
c.	Differentiate between heat engine and reverse heat engine.		2	L3	CO3	PO2	
d.	Compare the air standard efficiency equations of Otto and diesel cyc	eles.	2	L3	CO3	PO1	
e.	Compare dry bulb and wet bulb temperature.		2	L5	CO5	PO1	
	II : PART - B		90				
	UNIT - I		18				
1 a.	Explain the terms; Closed system, Intensive property, Thermodynamic equilib Quasi-static process and state.	rium,	9	L2	CO1	PO1	
b.	The temperature scale of a certain thermometer is given by the re $t = al_nX + b$, where 'a' and 'b' are constants and 'X' is the thermore property of the fluid in the thermometer. If at the ice and steam point thermometric property, are found to be 1.5 and 7.5 respect determine the temperature corresponding to thermometric property 3	netric nt, the ively,		L4	CO1	PO2	
c.	A Spherical balloon has a diameter of 30 cm contains air at a press 1.5 x 10^5 Pa. The diameter of balloon increases to 40 cm in a c process and during this process, the pressure is proportional to diar Determine work done by air inside balloon during this process.	ure of ertain	9	L4	CO1	PO2	

P18AU33 Page No 2					
UNIT - II		18			
2 a.	Prove that energy is the property of the system and state first law of	9	L3 CO2 PO2		
	thermodynamics for cyclic and non-cyclic processes.	7	L5 C02102		
b.	The Internal energy of certain substance is given by equation				
	n = 3.60 PV + 90 where 'n' is in kJ/kg, P is in kPa and V is in m ³ /kg.				
	A system composed of this substance expands from an initial pressure of				
	500 kPa and a volume of 0.22 m^3 to a final pressure, 100 kPa in a	9	L4 CO2 PO2		
	process in which pressure and volume are related as $PV^{1.2} = C$. If the				
	process is quasi-static determine the heat transfer, change in internal				
	energy and work done.				
c.	In a gas turbine unit, gas flows through the turbine at 17 kg/s and power				
	developed by turbine is 14000 kW. The enthalpies of gasses at inlet and				
	outlet as 1200 kJ/kg and 360 kJ/kg respectively. The velocities at inlet				
	and outlet are 60 m/s and 150 m/s respectively. Determine the rate at	9	L4 CO2 PO2		
	which heat is rejected from turbine. Also, determine the area of the inlet				
	and outlet pipes, given specific volume of gasses at inlet and outlet as				
	$0.35 \text{ m}^3/\text{kg}$ and $0.5 \text{ m}^3/\text{kg}$ respectively.				
	UNIT - III	18			
3 a.	State second laws of thermodynamics. Prove that violation of Clausius	9	L3 CO3 PO1		
	statement leads to violation of Kelvin-Planck statement.				
b.	A reversible heat engine operating between two reservoirs at temperature				
	600°C and 40°C. The Engine drive a refrigerator which operates between				
	reservoirs at temperatures of 40°C and -25°C. The heat transfer to the	9	L1 CO3 PO1		
	engine is 2000 kJ and the net work output of the combined engine and				
	refrigerator plant is 360 kJ. Determine the heat transfer to the refrigerator				
	and the net heat transfer the reservoir at 40°C.				
с.	Describe the working of Carnot cycle and derive an expression for	9	L3 CO3 PO1		
	thermal efficiency. UNIT - IV	18			
4 a.	Derive an expression for air standard efficiency of a diesel cycle.	10 9	L3 CO4 PO1		
+ a. b.	In an air standard Otto cycle the compression ratio is 7:1 and the	7	25 004101		
0.	compression begins at 35°C and 0.1 MPa. The maximum temperature of				
	the cycle is 1100°C. Determine;				
	i) Temperature and pressure at each end of process	9	L4 CO4 PO2		
	ii) The heat supplied				
	iii) Cycle efficiency				
	, -,,,				

P18AU33

c. Two stage compressor with perfect inter cooling takes in air at 1 bar pressure and 27°C. The compression path follow $PV^{1.3} = C$. The compressed air delivered at 10 bar from the high pressure cylinder 9 to an air receiver. Determine per kg of air, (i) minimum work done and (ii) heat rejected in the intercooler.

UNIT - V

- 5 a. Explain the Carnot refrigeration cycle with suitable P-V and T-S9 diagrams.
 - b. Explain the working of vapour compression refrigeration cycle.

i) Sub cooling achieved in heat exchanger

iv) Power required to drive compressor

ii) Refrigerant flow rate in kg/s

iii) COP of plant

c. A refrigerant-12 vapour compression plant producing 10 tonnes of refrigeration operates with condensing and evaporating temperatures of 35°C and 10°C respectively. The suction line heat exchanger is used to sub cool the saturated liquid leaving the condenser. Saturated vapour leaving the evaporator is superheated in the suction line. Heat exchanger to the extent that a discharge temperature of 60°C is obtained after 9 isentropic compression. Determine;

* * *

L4 CO5 PO2

L4 CO4 PO2

L3 CO5 PO1

L2 CO5 PO2

18

9

Page No... 3