P18AU	J 36		Pag	e No	1			
	U.S.N							
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) Third Semester, B.E Automobile Engineering Semester End Examination; March/April - 2022 Fluid Mechanics								
Time: 3 hrs Max. Marks: 100								
The Students will be able to:								
The Students will be able to: CO1: Understand and Explain various properties of fluids, Fluid - statics, kinematics & Dynamics and the basic concepts of Fluid mechanics								
CO2: Apply, Interpret and describe about laminar flow, compressible flow, Energy Losses in Flow through pipes and dimensional analysis about various primary & secondary units.								
CO3: Derive Equations for fluids properties, Fluid - statics, kinematics & Dynamics and their applications.								
CO4: Analyze/Compare, solve engineering problems involving fluid flow pertaining to fluids properties, Fluid - statics, kinematics & Dynamics and their applications.								
	Analyze and solve engineering problems pertaining fluid flow losses, dimensiona ractical applications of fluid mechanics in compressible flow.	ıl analysis	s techn	iques c	ind			
 <u>Note</u>: I) PART - A is compulsory. Two marks for each question. II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for Maximum of 18 marks from each unit. 								
Q. No.	Questions	Marks	BLs	COs	POs			
	I : PART - A	10						
I a.	State Newton's law of viscosity.	2	L1	CO1	PO1			
b.	What is pressure head?	2	L1	CO2	PO1			
c.	What is the condition for stable equilibrium for floating body?	2	L3	CO3	PO1			
d.	Write the Bernoulli's equation for real fluid.	2	L2	CO4	PO1			
e.	Explain terminal velocity of a body.	2	L2	CO5	PO1			
	II : PART - B	90						
	UNIT - I	18						
1 a.	State and prove Hydrostatic law using rectangular parallel piped element.	12	L2	CO1	PO1			
b.	A simple U-tube manometer containing mercury is connected to a pipe							
	in which a fluid of specific gravity 0.8 and having vacuum pressure is							
	flowing. The other end of the manometer is open to atmosphere. Find	12	L3	CO1	PO2			
	the vacuum pressure in pipe, if the difference of mercury level in the		_		-			
	two limbs is 40 cm and the height of fluid in the lift from the centre of pipe is 15 cm below.							
с.	Distinguish between absolute pressure, Gauge pressure and vacuum		_					
	pressure.	6	L2	CO1	PO1			

P18AU36			Page No 2	
UNIT - II		18		
2 a.	A circular plate 1.5 m diameter is submerged in water with its greatest			
	and least depths below the surface being 2 m and 0.75 m respectively.			
	Determine;	12	L3 CO2 PO2	
	i) The total pressure on the face of the plate			
	ii) The position of the centre of pressure			
b.	Determine the meta centric height by analytical method.	12	L3 CO2 PO1	
c.	Define;			
	i) Total pressure	6	L1 CO2 PO1	
	ii) Centre of pressure			
	UNIT - III	18		
3 a.	Define the equation of continuity. Obtain an expression for the continuity equation for a three-dimensional flow.	12	L2 CO3 PO1	
b.	A pipe line carrying oil of specific gravity 0.9 changes in diameter			
	from 0.2 m at a position A to 0.4 m diameter at a position B, which is			
	3.5 m at a higher level. If the pressure at A and B are 98,100 $\ensuremath{\text{N/m}^2}$ and	12	L3 CO3 PO2	
	58,860 N/m ² respectively and the discharge is 0.2 m^3 . Determine the			
	loss of head and direction of flow.			
c.	With neat sketch, explain pitot tube to measure the velocity of a	6	L2 CO3 PO1	
	flowing liquid.	0	L2 C05 101	
	UNIT - IV	18		
4 a.	An Oil with density 800 kg/m ³ and viscosity 0.16 N-s/m ² flows through			
	a 20 cm diameter pipe. The loss of head due to fluid friction over a			
	100 m length of pipe is 1.3 m of oil. Determine;	12	L3 CO4 PO2	
	i) The average velocity of the flow ii) The volumetric flow rate			
	iii) The wall shear stress iv) The Darcy's friction factor			
b.	Show that the velocity of sound wave in compressible fluid is given by,	10		
	$C = \sqrt{\frac{E}{s}}$	12	L2 CO4 PO1	
c.	Explain the terms mach number mach cone and mach angle.	6	L2 CO4 PO2	
	UNIT - V	18		
5 a.	Two reservoirs are connected by a pipeline of diameter 30 cm and			
	length 600 m. If the difference of water surface in the reservoir is 8 m,	12	L3 CO5 PO2	
	find the rate of flow. Take Darcy's friction factor $f = 0.03$. Consider			
	only the low due to fluid friction.			

Contd... 3

P18AU36		Page No 3		
b. Drag force F_D on a high speed aircraft depends on the velocity of flight				
V. The characteristic geometrical dimension of the aircraft L_1 , the				
density S, the viscosity μ and isentropic bulk modulus of elasticity Es	12	L3 CO5 PO2		
of the ambient air. Using Buckinghari's Π theorem. Find out the		L3 C03 F02		
independent dimensionless quantities, which describe the phenomenon				
drag on the aircraft.				
c. What is hydraulic gradient line and total energy line?	6	L1 CO5 PO1		

* * *