P

P18AU	J 52		Page	e No	. 1					
	<i>U.S.N</i>									
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) Fifth Semester, B.E Automobile Engineering Semester End Examination; February / March - 2022 Design of Machine Elements - II Time: 3 hrs Max. Marks: 100										
Course Outcomes										
CO1- Ar CO2- Da CO3- Da CO4- Da CO5- Se <u>Note</u> : 1	adents will be able to: nalyze the stresses in the critical section of a curved beam and design springs for different A esign Spur and helical and gears. esign Bevel and worm gears. esign clutches and brakes, with an understanding of safety issues related to brakes. elect lubricants and design sliding contact bearings, select rolling contact bearings for differ I) PART - A is compulsory. Two marks for each question.	rent applie	cations.							
Q. No.	PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for Maximum of 18 mark Questions	s from ed Marks			POs					
L	I : PART - A	10								
I a.	List the materials used for springs.	2	L1	CO1	PO1					
b.	Identify the design consideration of gear drive.	2	L1	CO2	PO1					
с.	List the components of resultant force acting on worm gears.	2	L1	CO3	PO1					
d.	Discuss the merits of belt drive.	2	L1	CO4	PO1					
e.	Enumerate the important properties of bearings material.	2	L1	CO5	PO1					
	II : PART - B	90								
	UNIT - I	18								
1 a.	Identify the key difference between straight and curved beam and illustrate the stress distribution patterns in a curved beam.	8	L3	CO1	PO2					
b.	Design a steel crane hook to have a capacity of 100 kN. Assume a factor of safety = 2 and trapezoidal section.	10	L3	CO1	PO2					
с.	A helical value spring is to be designed for an operating load range of									
	approximately 90 to 135 N. The deflection of the spring for load range is 7.5 mm.	10	L3	CO1	PO3					
	Assume a spring index of 10 and factor of safety = 2. Design the spring.									
	UNIT - II	18								
2 a.	Discuss the desirable properties of gear material.	4	L2	CO2	PO2					
b.	Design a pair of spur gears to transmit a power of 18 kW from a shaft running at									
	1000 rpm to a parallel shaft to be run at 250 rpm maintaining a distance of 160 mm between the shaft centers. Suggest a suitable surface hardness for the gear pair.	14	L3	CO2	PO3					
c.	Design a pair of helical gears to transmit power of 20 kW from a shaft running at 1500 rpm to a parallel shaft to be run at 450 rpm. Suggest suitable surface hardness for the gear pair.	14	L3	CO2	PO3					

P18AU	52		Pag	e No	2
UNIT - III		18			
3 a.	Discuss the thermal rating of Worm gear.	4	L3	CO3	PO3
b.	Design a pair of bevel gears to transmit a power of 25 kW from a shaft rotating at	14	1.2	CO2	
	1200 rpm to a perpendicular shaft to be rotated at 400 rpm.	14	L3	CO3	PO4
c.	A pair of worm and worm wheel is designated is 3/60/10/6. The worm is				
	transmitting 2.5 kW power at 1440 rpm to the worm wheel. The coefficient of	14	ТА	CO2	
	friction is 0.1 and the normal pressure angle is 20°. Determine the component of	14	L4	CO3	PU3
	gears tools force acting on the worm and worm wheel.				
	UNIT - IV	18			
4 a.	Discuss the advantages and disadvantages of V-belt over flat belts.	6	L2	CO4	PO1
b.	Two shafts one meter apart are connected by a V-belt to transmit 90 kW at				
	1200 rpm of a drives pulley of 300 mm effective diameter. The driven pulley				
	rotated at 400 rpm. The angle of groove is 40° and the coefficient of friction	12	L3	CO4	DOJ
	between the belt and pulley rim is 0.25. The area of belt section is 400 mm^2 and	12	LS	CO4	PO2
	the permissible stress is 2.1 MPa. Density of belt material is 1100 kg/m ³ .				
	Calculate the numbers of belts required and the length of the belt.				
c.	A simple band brake of drum diameter 600 mm has a band passing over it with				
	an angle of contact of 225° , while the other end is connected to the fulcrum, the				
	other end is connected to the brake levers at a distance of 400 mm from the	10	L3	CO4	PO1
	fulcrum. The brake lever is 1 m long. The brake is to absorb a power of 15 kW	12	Lo	CO4 .	PUI
	at 720 rpm. Design the brake lever of rectangular cross section, assuming depth				
	to be trice the width. Take allowable stress 80 MPa.				
	UNIT - V	18			
5 a.	Discuss the significance of bearing characteristic numbers in the design of sliding	6	1.2	CO5	
	contact bearings.	0	L2	COS	FUI
b.	A full journal bearing of 50 mm diameter, 750 mm long supports a radial load of				
	1000 N. The speed of the shaft is 600 rpm. The surface temperature of bearing is				
	limited to 60°C and the room temperature is 30°C. Determine the viscosity of the	12	L3	CO5	PO2
	oil, if the bearings are well ventilated and no artificial cooling is to be used. The				
	ratio of journal diameters to diametrical clearance is 1000.				
c.	Determine the main dimensions and power loss of a multi collar trust bearing for				
	a propeller shaft of 450 kW marine oil engine. The engine makes 250 rpm. The	12	L3	CO5	PO2
	shaft diameter is 150 mm of the speed of the ship is 5 m/s.				

* * * *