U.S.N					

P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi)

Fifth Semester, B.E. - Automobile Engineering Semester End Examination; February / March - 2022 Automotive Fuels and Combustion

Time: 3 hrs Max. Marks: 100

Course Outcomes

The Students will be able to:

- CO1: Explain available energy sources for I.C. Engines & discuss their advantages and limitation; Explain refining process of petroleum and their by-products and their properties.
- CO2: Determine A/F ratio for any given fuel & Rating of SI and CI Engine fuels.
- CO3: Analyze the combustion phenomena of SI & CI Engine.
- CO4: Explain recent developments in the field of I.C. Engines.
- CO5: Explain the constructional and working principle of multi and dual fuel Engine and their advantages and limitation.

Note: I) **PART - A** is compulsory. **Two** marks for each question.

II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for Maximum of 18 marks from each unit.

Q. No.	Questions I : PART - A	Marks 10	BLs	COs	POs
I a.	The difference between Otto and Diesel cycles is that in the latter	2	L1	CO1	PO1
	heat addition is at constant				
b.	Aromatics have the general formula	2	L2	CO2	PO1
c.	Mention the stages of combustion in SI Engines.	2	L3	CO3	PO1
d.	Define dual fuel engine.	2	L4	CO4	PO1
e.	Mention the two methods of obtaining variable compression ratio.	2	L5	CO5	PO1
	II : PART - B	90			
	UNIT - I	18			
1 a.	What are the assumptions made in air standard cycles analysis?	9	L1	CO3	PO2
b.	Discuss the problem associated with exhaustible sources of energy	9	L1	CO1	PO1
	in present scenario.	9	Lı	COI	101
c.	Briefly explain the following energy sources:				
	i) Solar energy	9	L1	CO1	PO1
	ii) Wind power	9	LI	COI	POI
	iii) Geothermal power				
	UNIT - II	18			
2 a.	With a neat sketch, explain the refining of petroleum.	9	L2	CO2	PO2
b.	Define and explain the following fuel properties:				
	i) Flash and Fine point	0	1.0	CO1	DO1
	ii) Cloud and Power point	9	L2	CO1	PO1
	iii) API and Specific gravity				
c.	Explain any three non-petroleum fuels.	9	L2	CO1	PO1

P18AU53			Page No 2				
	UNIT - III	18					
3 a.	Explain the stages of combustion in SI engine with the help of	9	L3	CO3	PO2		
	pressure crank-angle diagram.		113	003	102		
b.	Discuss the effect of the following engine variables on flame						
	propagation.						
	i) Fuel-air ratio	9	L3	CO3	PO2		
	ii) Compression ratio						
	iii) Turbulance						
c.	What is the importance of delay period? Discuss any four variables	0	1.2	CO2	DO2		
	affecting delay period.	9	L3	CO3	PO2		
	UNIT - IV	18					
4 a.	Explain the working of a dual fuel engine with the help of	0	т 4	CO 4	DO1		
	P - θ diagram.	9	L4	CO4	PO1		
b.	Explain the effects of the following on combustion in dual						
	fuel engine:						
	i) Injection timing	9	L4	CO4	PO1		
	ii) Cetane number						
	iii) Throttling						
c.	Explain the modifications required for fuel system of a multi	0	т 4	CO.5	DO2		
	fuel engine.	9	L4	CO5	PO2		
	UNIT - V	18					
5 a.	Explain the working principle of Volkswagen PCI stoatified charge	0	1.5	CO5	DO2		
	engine with a sketch.	9	L5	CO5	PO2		
b.	Discuss the general characteristics of stratified charge engines and	0	T 7	G0.5	DO2		
	mention the advantages and disadvantages of these engines.	9	L5	CO5	PO2		
c.	Compare the performance of VCR engine with that of a	0	1.5	005	DO2		
	connectional constant compression ratio engine.	9	L5	CO5	PO2		

* * * *