\square

P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belagavi)
Third Semester, B.E. - Computer Science and Engineering Make-up Examination; May - 2022

Digital Logic Design
Max. Marks: 100

Course Outcomes

The Students will be able to:
CO1: Design simplified logic circuits using Boolean equation minimization techniques.
CO2: Design the data processing circuits.
CO3: Design memory circuits.
CO4: Design shift registers and counters using flip-flops.
CO5: Derive state machine models for sequential circuits and write VHDL code for all logic circuits.
Note: I) PART - A is compulsory. Two marks for each question.
II) PART-B: Answer any Two sub questions (from a, b, c) for a Maximum of 18 marks from each unit.
Q. No.

Questions
 I : PART - A

Marks BLs COs POs 10

I a. Find the duality of the expression: $\left(A D^{\prime}+B\left(C^{\prime}+A\right)\right)$.
L1 CO1 PO1
2 L1 CO2 PO1
2 L2 CO3 PO1
c. Give any two differences between PAL and PLA.
d. What type of counter is shown in below figure? Which flip flop is LSB?

$2 \quad \mathrm{~L} 3 \quad \mathrm{CO} 4 \mathrm{PO} 2$
e. Define Melay model. In Moore Models output are the functions of only,
i) Present State of FF
ii) Input state
iii) Next state
iv) Both i and ii
II : PART - B 90

UNIT - I
1 a. Simplify the following expression using Boolean laws and write the logic circuit for the given expression using only NAND gate
$9 \quad$ L3 CO1 PO1 $\left(x+y^{\prime} z\right)+\left(x+y^{\prime} z\right)^{\prime}$.
b. Using Quine-McClusky method find minimized SOP expression for,
$F(A, B, C)=\Sigma m(0,1,5,7)$.
$9 \quad \mathrm{~L} 3 \quad \mathrm{CO} 1 \mathrm{PO} 3$
Draw the logic circuit for the simplified expression.
c. Design a combinational circuit which has four inputs $A B C D$ and three outputs wxy. wxy represents the number of 1's at the input. Obtain the expressions for $w x y$ using MEV method.

UNIT - II
2 a . Design BCD to seven segment display decoder.
b. Implement full adder and full subtractor using demultiplexer.
c. Design priority encoder with inputs as $I_{3}, I_{2}, I_{1}, I_{0}$ and I_{0} is LSB having highest priority.

UNIT - III

3 a . Implement the following function using PROM:
$F_{1}(A, B, C)=\operatorname{Em}(0,1,2,4)$
$F_{2}(A, B, C)=\Sigma m(0,5,6,7)$
b. Explain the working of D flip flop and JK flip flop with state diagram, characteristic equation and excitation table.
c. List the steps to convert given flip flop to another flip flop. Convert JK flip flop to D flip flop.

UNIT - IV

4 a . Define shift register. Explain with figure 4-bit serial in serial out shift register.
b. Explain the working of asynchronous up counter using JK FF.
c. Design 3-bit synchronous counter to count the sequence given below with lockout state. Use D FF.
$2 \rightarrow 6 \rightarrow 7 \rightarrow 1$
UNIT - V
5 a. Write VHDL code for:
i) D FF
ii) 8:1 MUX
b. Write Melay transition, state table and state graph for Serial adder. Explain the same.
c. Explain with an example, Row elimination method to reduce the number of states.

18

10 L3 CO2 PO3
8 L2 CO2 PO3
8 L3 CO2 PO3

18

9 L2 CO3 PO3
$9 \quad \mathrm{~L} 2 \mathrm{CO} 3 \mathrm{PO} 1$

9 L3 CO3 PO1

18

9 L3 CO4 PO1
$9 \quad \mathrm{~L} 3 \mathrm{CO} 4 \mathrm{PO} 2$

9 L3 CO4 PO2

18

9 L2 CO5 PO1

9 L2 CO5 PO2
$9 \quad \mathrm{~L} 2 \mathrm{CO}$ PO1

