

P18CS32			Page No 2
	UNIT - II	18	
2 a.	Design BCD to seven segment display decoder.	10	L3 CO2 PO3
b.	Implement full adder and full subtractor using demultiplexer.	8	L2 CO2 PO3
c.	Design priority encoder with inputs as I_3 , I_2 , I_1 , I_0 and I_0 is LSB having highest priority.	8	L3 CO2 PO3
	UNIT - III	18	
3 a.	Implement the following function using PROM:		
	$F_{1}(A, B, C) = \Sigma m(0, 1, 2, 4)$	9	L2 CO3 PO3
	$F_2(A, B, C) = \Sigma m(0, 5, 6, 7)$		
b.	Explain the working of D flip flop and JK flip flop with state diagram,	9	L2 CO3 PO1
	characteristic equation and excitation table.		
c.	List the steps to convert given flip flop to another flip flop. Convert JK	9	L3 CO3 PO1
	flip flop to D flip flop. UNIT - IV	18	
4 a.	Define shift register. Explain with figure 4-bit serial in serial out	10	
-	shift register.	9	L3 CO4 PO1
b.	Explain the working of asynchronous up counter using JK FF.	9	L3 CO4 PO2
c.	Design 3-bit synchronous counter to count the sequence given below with		
	lockout state. Use D FF.	9	L3 CO4 PO2
	$2 \rightarrow 6 \rightarrow 7 \rightarrow 1$		
	UNIT - V	18	
5 a.	Write VHDL code for:		
	i) D FF	9	L2 CO5 PO1
	ii) 8:1 MUX		
b.	Write Melay transition, state table and state graph for Serial adder.	9	L2 CO5 PO2
	Explain the same.	7	L2 C03 102
c.	Explain with an example, Row elimination method to reduce the number of states.	9	L2 CO5 PO1

* * *