

CO1: Design and Implement standard data structures like stack using recursion.

CO2: Design and implement operations on linked list.

CO3: Develop programs to implement different queues.

CO4: Design and implement different tree traversal techniques using iteration and recursion.

CO5: Implement sorting and searching techniques.

Note: I) PART - A is compulsory. Two marks for each question.

II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for a Maximum of 18 marks from each unit.

Q. No.	Questions	Marks	BLs	COs	POs
	I : PART - A	10			
I a.	What is a pointer variable? Discuss how pointers are declared and	2	L2	CO1	PO1
	initialized in C?	-		001	101
b.	When do you use realloc() function? Explain with syntax.	2	L2	CO2	PO1
c.	List the advantages of Double linked list over Single linked list.	2	L1	CO3	PO1
d.	What are the advantages of Threaded binary tree?	2	L1	CO4	PO1
e.	Differentiate Binary search and Linear search.	2	L3	CO5	PO1
	II : PART - B	90			
	UNIT - I	18			
1 a.	Discuss different dynamic memory allocation function in 'C'				
	with its syntax. Write a 'C' program to demonstrate the dynamic	9	L2,4	CO1	PO3,1
	memory allocation.				
b.	I) Illustrate applications of stacks. Write an algorithm for infix to				
	postfix conversion.				
	II) Write the postfix and prefix expression for the following infix	9	L2,4	CO1	PO3,1
	expressions:				
	i) X + Y * (A – B) ii) A * (B + C) \$ D				
с.	Define stack. With the 'C' function, discuss the various operations	C		901	D011
	performed on stacks.	9	L3,4	COI	PO3,1
	UNIT - II	18			
2 a.	Write recursive functions for;				
	i) Factorial of a number	9	104	CO2	DO1 2
	ii) <i>n</i> th Fibonacci number		L2,4	02	PO1,3
	iii) Tower of Hanoi				

P18CS33			Page No 2
b.	Discuss the advantages of circular queue over ordinary queue.		
	Mention any two applications of queues. Write a function to Insert	9	L2,4 CO2 PO1,3
	rear and Delete rear on circular queue.		
c.	What are double ended queues? Write a 'C' program to demonstrate	9	L2 CO2 PO1,3
	how double ended queue work as stacks?	,	12 002 101,5
	UNIT - III	18	
3 a.	Explain SLL. With a 'C' function, discuss the operations on SLL.	9	L2 CO3 PO3,2,1
b.	What are double linked list? Demonstrate its working as a queue with 'C' function.	9	L2 CO3 PO3,1
c.	What is header node? Discuss its advantages. Write a 'C' program to	9	L3.4 CO3 PO3,1
	implement SLL using header node concept.		105,1
	UNIT - IV	18	
4 a.	Define the following with an example:		
	i) Binary tree		
	ii) Complete binary tree	9	L3 CO3 PO1,3
	iii) Almost complete binary tree	-	
	iv) Binary search tree		
	v) Sibling		
b.	Define BST. Write a 'C' function to implement BST. Construct BST		
	and perform different traversing for given input;	9	L3 CO3 PO1,3
	7, 9, 5, 8, 12, 6, 4, 24, 3.		
с.	Write a 'C' function to evaluate the expression represented by a		
	binary tree. Construct a binary tree for the expression,	9	L3 CO3 PO1,3
	A + (B - C) * (E + F) / G.		
	UNIT – V	18	
5 a.	Explain address calculation sort with an example.	9	L2 CO5 PO1,2,3
b.	Perform Radix sort for the following elements:		
	81, 76, 93, 23, 57, 68, 12, 08, 31, 28, 39.	9	L4 CO5 PO1,2,3
	Write a 'C' function which perform Radix sort.		
c.	Explain probability search with an algorithm.	9	L4 CO5 PO1,2