U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)
Third Semester, B.E. - Computer Science and Engineering
Make-up Examination; May - 2022

Computer Organization

Time: 3 hrs Max. Marks: 100

Course Outcomes

The Students will be able to:

- CO1: Understand and analyze the machine instructions and program execution.
- CO2: Understand and explain the I/O organisation.
- CO3: Understand and explain the memory system.
- CO4: Apply the algorithms used for performing various arithmetic operations.
- CO5: Understand and Explain the Concept of Basic Input/Output.

<u>Note</u>: I) PART - A is compulsory. Two marks for each question.

II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for a Maximum of 18 marks from each unit.

11)	TAKI - B. Answer any <u>Two</u> sub-questions (from a, b, c) for a maximum of 16			
Q. No.	Questions	Marks	BLs COs	POs
	I : PART - A	10		
I a.	Give basic performance equation defining each parameter.	2	L1 CO1	PO1
b.	Define word and word length of a computer memory.	2	L1 CO2	PO1
c.	What is source program and object program?	2	L1 CO3	PO1
d.	Explain the instructions associated with subroutines.	2	L2 CO4	PO1
e.	List the steps involved in the execution of an instruction.	2	L1 CO5	PO1
	II : PART - B	90		
	UNIT - I	18		
1 a.	With a block diagram, explain the basic functional units of a computer.	9	L2 CO1	PO1,2
b.	With a block diagram, explain the connectivity of a processor and memory. Explain the internal components of processor.	9	L2 CO1	PO1,2
c.	Solve the following problem by using basic performance equation.			
	A program contains 1000 instructions. Out of that 25% instructions			
	requires 4 clock cycles, 40% instructions requires 5 clock cycles and	9	L3 CO1	PO3
	remaining 3 clock cycles for execution. Find the total time required to			
	execute the program running in a 1 GZ machine.			
	UNIT - II	18		
	Illustrate the concept of Byte addressability, Big Endian and Little	0	12 602	DO2
	Endian assignments with examples.	9	L2 CO2	PO2
b.	With an example, explain basic instruction types.	9	L3 CO2	PO2
c.	Define addressing mode. Explain any four addressing modes with an example to each.	9	L1,2 CO2	PO1,2

Page No... 2 P18CS34 **UNIT - III** 18 3 a. What are assembler directives? Explain the various assembler 9 L1,2 CO3 PO1,2 directives with an example for each. b. What are the operations performed by the 'call' instruction? Illustrate 9 L1,2 CO3 PO1,2 the process of subroutine linkage using a link register. c. Illustrate the various types of shift and rotate instructions with 9 L2 CO3 PO2 suitable examples. **UNIT - IV** 18 4 a. With a neat diagram, explain single bus organization of the data path 9 L2 CO4 PO2 inside a processor. b. Give differences between hardwired control unit and micro-9 L1,2 CO4 PO2 programmed control unit. c. Define bus master. Explain various types of bus arbitration in detail. 9 L1,2 CO4 PO1,2 UNIT - V 18 5 a. Describe the following types of ROM: i) PROM 9 L2 CO5 PO2 ii) EPROM iii) EEPROM b. What are different cache mapping techniques? Explain them with L1,2 CO5 PO1,2

9

L2 CO5 PO2

c. Illustrate Booth's algorithms for signed operation multiplication.

their tag bits.