U.S.N



## P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)
Third Semester, B.E. - Computer Science and Engineering

Semester End Examination; March / April - 2022 Computer Organization

Time: 3 hrs Max. Marks: 100

## Course Outcomes

The Students will be able to:

- CO1: Understand and analyze the machine instructions and program execution.
- CO2: Understand and explain the I/O organisation.
- CO3: Understand and explain the memory system.
- CO4: Apply the algorithms used for performing various arithmetic operations.
- CO5: Understand and Explain the Concept of Basic Input/Output.

**Note:** I) **PART -** A is compulsory. **Two** marks for each question.

II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for a Maximum of 18 marks from each unit.

| Q. No. | Questions                                                           | Marks | BLs | COs | POs   |
|--------|---------------------------------------------------------------------|-------|-----|-----|-------|
|        | I: PART - A                                                         | 10    |     |     |       |
| I a.   | Define software.                                                    | 2     | L1  | CO1 | PO1   |
| b.     | Define with an example LSB and MSB.                                 | 2     | L1  | CO2 | PO1   |
| c.     | Define assembly language.                                           | 2     | L1  | CO3 | PO1   |
| d.     | List any two input and output devices.                              | 2     | L2  | CO4 | PO1   |
| e.     | What is the need for cache memory?                                  | 2     | L1  | CO5 | PO1   |
|        | II: PART - B                                                        | 90    |     |     |       |
|        | UNIT - I                                                            | 18    |     |     |       |
| 1 a.   | With a neat diagram, explain the functional units of a computer.    | 9     | L1  | CO1 | PO1   |
| b.     | List and explain the performance parameters considered to           | 9     | L1  | CO1 | PO1   |
|        | measure the system performance.                                     |       | Li  | COI | 101   |
| c.     | Explain the functions performed by a computer.                      | 9     | L1  | CO1 | PO1   |
|        | UNIT - II                                                           | 18    |     |     |       |
| 2 a.   | Explain different addressing modes with an example.                 | 9     | L2  | CO2 | PO1   |
| b.     | Explain different types of instructions with an example.            | 9     | L2  | CO2 | PO1   |
| c.     | Explain the different steps involved in instruction execution       | 9     | L2  | CO2 | PO1   |
|        | sequence.                                                           |       |     |     |       |
|        | UNIT - III                                                          | 18    |     |     |       |
| 3 a.   | What are the operations performed by a call instruction? Illustrate | 9     | L2  | CO3 | PO1,2 |
|        | the process of subroutine linkage using link register.              |       |     |     |       |
| b.     | With an example, list shift and rotate instruction.                 | 9     | L1  | CO3 | PO1,2 |
| c.     | Write an assembly language program to add two 8-bit numbers         | 9     | L3  | CO3 | PO1,2 |
|        | considering carry.                                                  | J     | LJ  | CO3 | 101,2 |

| P18CS34 |                                                                                             |    |    |     | No 2  |
|---------|---------------------------------------------------------------------------------------------|----|----|-----|-------|
|         | UNIT - IV                                                                                   | 18 |    |     |       |
| 4 a.    | With a neat diagram, explain single bus organization of the data path in a computer system. | 9  | L3 | CO4 | PO1,2 |
| b.      | Give the difference between hardwired and microprogrammed control unit.                     | 9  | L3 | CO4 | PO1,2 |
| c.      | Define bus master. Explain various types of bus arbitration with a neat diagram.            | 9  | L3 | CO4 | PO1,2 |
|         | UNIT - V                                                                                    | 18 |    |     |       |
| 5 a.    | Explain different types of memory.                                                          | 9  | L2 | CO5 | PO1   |
| b.      | Explain associate and set associative mapping techniques of cache memory.                   | 9  | L2 | CO5 | PO1   |
| c.      | Explain the Booth algorithm with an example.                                                | 9  | L2 | CO5 | PO1   |