U.S.N

\square

P.E.S. College of Engineering, Mandya - 571401
 (An Autonomous Institution affiliated to VTU, Belagavi)
 Third Semester, B.E. - Computer Science and Engineering Make-up Examination; May - 2022
 Discrete Mathematical Structures

Time: 3 hrs
Max. Marks: 100

Course Outcomes

The Students will be able to:
CO1: Verify the correctness of an argument using propositional and predicate logic.
CO2: Demonstrate the ability to solve problems using counting techniques and Combinatorics in the context of discrete probability.
CO3: Solve problems involving recurrence relations.
CO4: Construct proofs using direct proof, proof by contraposition, proof by contradiction, and proof by cases, and mathematical induction.
CO5: Ability to Explain and distinguish graphs and their properties.
Note: I) PART - A is compulsory. Two marks for each question.
II) PART - B: Answer any Two sub questions (from a, b, c) for a Maximum of $\mathbf{1 8}$ marks from each unit.

Q. No.	Questions	Marks BLs COs POs
	I: PART - A	10

I a. Write the converse, contrapositive of the statement, "If you have password then you can \log in to your account".
b. Represent the given sequence recursively and explicitly,
$3,1,3,1,3,1, \ldots \ldots \ldots$
c. Represent in the symbolic form and negate,
"Some integers are divisible by 5 ".
d. Define derangements and list all derangements of 1, 2, 3, 4 .

L2 CO4 PO1
e. Define an r-regular graph. Does a graph 3-regular of 19 vertices exist (Justify).

II : PART - B

UNIT - I
18
1 a. Define Tautology, Logical equivalence.
Simplify $(\neg p \vee \neg q) \rightarrow(p \wedge q \wedge r)$ using laws and without laws.
b. Verify the validity of the given argument,
$P \rightarrow(q \rightarrow r)$
$P \vee \neg s \quad 9 \quad$ L3 CO 1 PO 2
q
$\therefore s \rightarrow r$
c. Define Quantifiers with an example for each. Find the truth value of the following statements:
(i) $\forall x p(x) \rightarrow q(x)$
(ii) $\neg x p(r) \wedge q(x)$
(iii) $\forall x \neg p(x) \rightarrow \neg q(x)$
9 L3 CO1 PO3

Where; $p(x): x^{2}=x ; \quad q(x): x$ is even.

UNIT - II
2 a. (i) Prove that $1^{3}+2^{3}+3^{3}+\ldots \ldots+n^{3}=\left[\frac{n(n+1)}{2}\right]^{2} \quad \forall n \geq 1$.
(ii) Disprove $\sum_{i=1}^{n} i=\frac{n^{2}+n+2}{2}$.
b. Define Binomial and Multinomial theorem and hence find the coefficient of $x^{6} y^{7} z^{3}$ in the expansion of $(2 x+3 y-z+7)^{20}$.
c. Find the number of positive integer solutions of the equations,
(i) $x_{1}+x_{2}+x_{3}+x_{4}+x_{5}<20$ for all $x_{i} \geq 1$
(ii) $x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=20 \forall x_{i} \geq 0$

UNIT - III

3 a . Let " R " be a relation defined as $(a, b) \in R$ iff $a \equiv b(\bmod 3)$ on $A=\{3,4,6,7,8\}$
(i) Prove that " R " is an equivalence relation
(ii) Write the matrix relation of R
(iii) Draw the Digraph representing the relation
(iv) Find the Partition induced by R on A
b. Find the number of equivalence relations that can be defined on a finite set
$\mathrm{A},|A|=5$.
c. Let $A=\{1,3,6,18,12\}$ and " R " be a relation defined as $(a, b) \in R$ iff " a is multiple of b ". Prove that R is a partially ordered relation and draw the Hasse's diagram that represents the relation.

UNIT - IV

4 a . Determine the number of integers 1 to 300 (inclusively) which are divisible by,
(i) exactly two of $5,6,8$
(ii) at least two of 5, 6, 8
b. Define derangements.
(i) Derive the formula for $d_{n}=n!\sum_{k=0}^{n} \frac{(-1)^{k}}{k!}$.
(ii) Find the rook polynomial for 3×3 board.
c. Solve the recurrence relation,

$$
2 a_{n+3}=a_{n+2}+2 a_{n+1}-a_{n} \text { for } n \geq 0 \text { with } a_{0}=0, a_{1}=1, a_{2}=2 .
$$

$9 \quad \mathrm{~L} 2 \mathrm{CO} 3 \mathrm{PO} 2$
$9 \quad \mathrm{~L} 2 \mathrm{CO} 4 \mathrm{PO} 2$
$9 \quad \mathrm{~L} 2 \mathrm{CO} 2 \mathrm{PO} 2$
$9 \quad \mathrm{~L} 2 \mathrm{CO} 2 \mathrm{PO} 4$
$9 \quad \mathrm{~L} 3 \mathrm{CO} 2 \mathrm{PO} 4$

18

9 L2 CO3 PO2

9
L2 CO3 PO1
$9 \quad \mathrm{~L} 2 \mathrm{CO} 4 \mathrm{PO} 1$

9
L2 CO4 PO2

UNIT - V
5 a. (I) Define Euler graph and Hamiltonian graphs.
(II)Determine the order $|V|$ of the graph $G=(V, E)$ in the following cases
(i) G is a cubic graph with 9 edges
(ii) G is a regular with 15 edges
(iii) G has 10 edges with 2 vertices of degree 4 and all the vertices of degree 3
b. Define optimal prefix code and find the same for the message "LETTER RECEIVED". Indicate the code.

L3 CO5 PO4

