P18C5	835		Page No	1	
	U.S.N				
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) Third Semester, B.E Computer Science and Engineering Make-up Examination; May - 2022 Discrete Mathematical Structures					
Time:		Max	x. Marks: 100	0	
 Course Outcomes The Students will be able to: CO1: Verify the correctness of an argument using propositional and predicate logic. CO2: Demonstrate the ability to solve problems using counting techniques and Combinatorics in the context of discrete probability. CO3: Solve problems involving recurrence relations. CO4: Construct proofs using direct proof, proof by contraposition, proof by contradiction, and proof by cases, and mathematical induction. CO5: Ability to Explain and distinguish graphs and their properties. Note: I) PART - A is compulsory. Two marks for each question. 					
Q. No.	I) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for a Maximum of 18 ma Questions	-	BLs COs PC	Os	
Q . 1100	I : PART - A	10		00	
I a.	Write the converse, contrapositive of the statement,	2	L2 CO1 PC	21	
	"If you have password then you can log in to your account".	_			
b.	Represent the given sequence recursively and explicitly, 3, 1, 3, 1, 3, 1,	2	L2 CO2 PC	52	
c.	Represent in the symbolic form and negate,	2	L2 CO3 PC	`	
	"Some integers are divisible by 5".	2	L2 COJ FC	J2	
d.	Define derangements and list all derangements of 1, 2, 3, 4.	2	L2 CO4 PC	D 1	
e.	Define an r-regular graph. Does a graph 3-regular of 19 vertices exist (Justify).	2	L3 CO5 PC	D 1	
	II : PART - B	90			
	UNIT - I	18			
1 a.	Define Tautology, Logical equivalence. Simplify $(\neg p \lor \neg q) \rightarrow (p \land q \land r)$ using laws and without laws.	9	L2 CO1 PC	52	
b.	Verify the validity of the given argument, $P \rightarrow (q \rightarrow r)$				
	$P \lor \neg s$ $\frac{q}{\therefore s \to r}$	9	L3 CO1 PC	52	
c.	Define Quantifiers with an example for each. Find the truth value of the following statements:				
	(i) $\forall xp(x) \rightarrow q(x)$ (ii) $\neg xp(r) \land q(x)$ (iii) $\forall x \neg p(x) \rightarrow \neg q(x)$	9	L3 CO1 PC	53	

(i) $\forall xp(x) \rightarrow q(x)$ (ii) $\neg xp(r) \land q(x)$ Where; $p(x): x^2 = x$; q(x): x is even.

Contd... 2

P18CS35

Page No... 2

	UNIT - II	18	0
2 a.	(i) Prove that $1^3 + 2^3 + 3^3 + \dots + n^3 = \left[\frac{n(n+1)}{2}\right]^2 \forall n \ge 1.$	9	L2 CO2 PO2
	(ii) Disprove $\sum_{i=1}^{n} i = \frac{n^2 + n + 2}{2}$.		
b.	Define Binomial and Multinomial theorem and hence find the coefficient	0	
	of $x^6 y^7 z^3$ in the expansion of $(2x+3y-z+7)^{20}$.	9	L2 CO2 PO4
c.	Find the number of positive integer solutions of the equations,		
	(i) $x_1 + x_2 + x_3 + x_4 + x_5 < 20$ for all $x_i \ge 1$	9	L3 CO2 PO4
	(ii) $x_1 + x_2 + x_3 + x_4 + x_5 = 20 \forall x_i \ge 0$		
	UNIT - III	18	
3 a.	Let "R" be a relation defined as $(a,b) \in R$ iff $a \equiv b \pmod{3}$ on		
	$A = \{3, 4, 6, 7, 8\}$		
	(i) Prove that " <i>R</i> " is an equivalence relation	9	L2 CO3 PO2
	(ii) Write the matrix relation of R	2	12 000102
	(iii) Draw the Digraph representing the relation		
	(iv) Find the Partition induced by R on A		
b.	Find the number of equivalence relations that can be defined on a finite set	0	
	A, $ A = 5$.	9	L2 CO3 PO2
c.	Let $A = \{1, 3, 6, 18, 12\}$ and "R" be a relation defined as $(a,b) \in R$ iff "a is		
	multiple of b ". Prove that R is a partially ordered relation and draw the	9	L2 CO3 PO1
	Hasse's diagram that represents the relation.		
	UNIT - IV	18	
4 a.	Determine the number of integers 1 to 300 (inclusively) which are		
	divisible by,	9	L2 CO4 PO1
	(i) exactly two of 5, 6, 8	-	
	(ii) at least two of 5, 6, 8		
b.	Define derangements.		
	(i) Derive the formula for $d_n = n! \sum_{k=0}^n \frac{(-1)^k}{k!}$.	9	L2 CO4 PO2
	(ii) Find the rook polynomial for 3 x 3 board.		
c.	Solve the recurrence relation,	9	L2 CO4 PO2
	$2a_{n+3} = a_{n+2} + 2a_{n+1} - a_n$ for $n \ge 0$ with $a_0 = 0$, $a_1 = 1$, $a_2 = 2$.	フ	L2 CO4 PO2

UNIT - V	18	-
5 a. (I) Define Euler graph and Hamiltonian graphs.		
(II)Determine the order $ V $ of the graph $G = (V, E)$ in the following case	S	
(i) G is a cubic graph with 9 edges	9	L3 CO5 PO4
(ii) G is a regular with 15 edges		20 000101
(iii) G has 10 edges with 2 vertices of degree 4 and all the vertices of	of	
degree 3		
b. Define optimal prefix code and find the same for the message "LETTE	R 9	L3 CO5 PO4
RECEIVED". Indicate the code.	9	

c. Using Kruskal's algorithm and Prim's Algorithm to find the minimal spanning tree of the graph given below:

P18CS35

9 L3 CO5 PO4

Page No... 3

* * *