P18CS35			Рс	age No	o 1				
	U.S.N								
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) Third Semester, B.E Computer Science and Engineering Semester End Examination; March / April - 2022 Discrete Mathematical Structures Time: 3 hrs Max. Marks: 100									
1111112: 0 1113	Course Outcomes		max. I	nurns.	. 100				
CO2: Demonstrate discrete problem CO3: Solve problem CO4: Construct pro mathematical CO5: Ability to Exp <u>Note</u> : I) PART - A II) PART - B:	rectness of an argument using propositional and predicate logic. the ability to solve problems using counting techniques and Co- ability. as involving recurrence relations. pofs using direct proof, proof by contraposition, proof by contradio of induction. lain and distinguish graphs and their properties. is compulsory. Two marks for each question. Answer any <u>Two</u> sub questions (from a, b, c) for a Maximum of 18	ction, and B marks fi	proof	by case	s, and				
Q. No.	Questions I : PART - A	Marks 10	BLs	COs	POs				
I a. $p:A$ is a c	ircle or a conic								
r: Expor	real number nential series is convergent. Express the compound	2	L2	CO1	PO1				
	tion $p \rightarrow (q \lor r)$ in words. e recursive definition for the sequence (a_n) given by, - 2).	2	L1	CO2	PO1				
$f(x) = \begin{cases} 2 \\ - \end{cases}$	$ \rightarrow R \text{ defined by,} 3x-5 x > 0 -3x+1 x \le 0 : f^{-1}(0), f^{-1}(1). $	2	L2	CO3	PO1				
d. There are different a so that at l	eight letters to eight different people to be placed in ddressed envelopes. Find the number of ways of doing this east one letter gets to the right person. the number of different paths of length 2 in the graph	2	L2	CO4	PO1				
shown bel	ow.	2	L2	CO5	PO2				

	II : PART - B	90			
1 a.	UNIT - I Prove that for any three propositions,	18			
1 a.	$\neg [\{(p \lor q) \land r\} \rightarrow \neg q] \iff \neg [\neg \{(p \lor q) \land r\} \lor \neg q] \iff q \land r.$	9	L2	CO1	PO2
b.	Establish the validity of the argument,				
	$p \rightarrow q$				
	$q \rightarrow r \wedge s$	9	L3	CO1	DOJ
	$\neg r \lor (\neg t \lor u)$	9	LS	COI	FU2
	$\underline{p \wedge t}$				
	$\therefore u$				
c.	Find whether the following argument is valid?				
	If a triangle has two equal sides then it is isosceles				
	If a triangle is isosceles. Then it has two equal angles	9	L2	CO1	PO2
	The triangle ABC does not have two equal angles.				
	: ABC does not have two equal sides.				
	UNIT - II	18			
2 a.	If <i>n</i> is any positive integer prove that,				
	$1.2 + 2.3 + 3.4 + \dots + n(n+1) = \frac{1}{3}n(n+1)(n+2)$ using mathematical	9	L1	CO2	PO1
b.	induction. A sequence $\{a_n\}$ is defined recursively by,				
0.		9	L2	CO2	PO1
	$a_1 = 4$, $a_n = a_{n-1} + n$, $n \ge 2$ find a_n in explicit form.				
c.	I) How many arrangements are there for all letters in the word				
	SOCIOLOGICAL?	0	1.0	000	DOO
	II) In how many of these arrangements?	9	L2	CO2	PO2
	i) A and G are adjacent?				
	ii) All the vowels are adjacent?	10			
2		18			
3 a.	State Pigeon hole principle and extended Pigeon hole principle.				
	A magnetic tape contains a collection of 5 lakh strings made up of	9	L3	CO3	PO2
	four or fewer number of english letters. Can all the strings in the				
1	collection be distinct?				
b.	Let $A = \{1, 2, 3, 4, 5\}$. Define a relation R on $A \ge A$ by, $(x_1, y_1) R(x_2, y_2)$ If and only if $x_1 + y_1 = x_2 + y_2$				
	i) Verify that R is an equivalence relation on $A \times A$	9	L2	CO3	PO2
	ii) Determine the equivalence classes $[(1,3)], [(2,4)]$ and $[(1,1)]$				
	iii) Determine the partition of $A \times A$ induced by <i>R</i> .				
	Contd 3				

P18CS35

P18CS35			Page No 3		
c. Let $S = \{1, 2, 3\}$ and $P(S)$ be the power set of S on $P(S)$. Define the					
relation R by X R Y if and only if $X \subseteq Y$. Show that this relation is a	9	L2	CO3 PO1		
partial order on $P(S)$. Draw its Hasse diagram.					
UNIT - IV	18				
4 a. Find the rook polynomial for the board shown below					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	L3	CO4 PO2		
b. Solve the recurrence relation $a_n - 3a_{n-1} = 5 \times 3^n$ for $n \ge 1$ given					
that $a_0 = 2$.	9	L2	CO4 PO2		
c. How many integers between 1 and 300 (inclusive) are,					
i) Divisible by at least one of 5, 6, 8?	9	L2	CO4 PO2		
ii) Divisible by none of 5, 6, 8?					
UNIT - V	18				
5 a. Show that the following two graphs are isomorphic					
	9	L2	CO5 PO1		
b. Explain the Konigsberg bridge problem related to graph theory.	9	L2	CO5 PO2		
c. Obtain an optimal prefix code for the message,"LETTER RECEIVED". Indicate the code.	9	L3	CO5 PO2		

* * *