

5

3

 P_4

5

P18CS52 Page No 2					
i) Draw Gantt charts that illustrate the execution of these processes					
	using priority preemptive and non-priority, SJF preemptive				
	scheduling algorithms.				
	[Assume that larger number has higher priority]				
	ii) Calculate the average waiting time and average turnaround time				
	for each of the scheduling algorithm				
	UNIT - III	18			
3 a.	Illustrate "TestAndSet()" and "Swap()" instructions and their use	9	L3	CO3	PO2
h	in synchronization of processes.	9	L2	CO3	PO1
b.	Explain different methods to recover from deadlock.	9	LZ	COS	PUI
с.	Consider the following table:				
	Allocation Max Available				
	A B C D A B C D A B C D P1 0 0 1 2 0 0 1 2 0				
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
	P4 0 6 3 2 0 6 5 2	9	L3	CO3	PO2
	P5 0 0 1 4 0 6 5 6				
	Using Bankers algorithm check;				
	i) Compute the need matrix content				
	ii) Is the system is in safe state?				
	iii) If a request from process $P_1(0, 4, 2, 0)$ arrives, can it be granted				
	immediately?				
	UNIT - IV	18			
4 a.	Explain the structures of page table.	9	L2	CO4	PO1
b.	Consider the following reference string: 1, 2, 3, 4, 2, 1, 5, 6, 2, 1, 2,				
	3, 7, 6, 3, 2, 1, 2, 3, 6 for a memory with five frames. Calculate the	9	L3	CO4	PO2
	number of page faults for FIFO, LRU and optimal page				
	replacement algorithms. Which is the most efficient among them?				
с.	Memory partition of 100 kB, 500 kB, 200 kB, 300 kB and				
	600 kB are available in order, apply best-fit, worst-fit and first-fit	9	L3	CO4	PO2
	algorithm to place the processes of 212 kB, 417 kB, 112 kB,				
	426 kB in order.	10			
5 a.	UNIT - V Define directory structure. Explain different directory structures.	18 9	L2	CO5	PO1
5 u. b.	Explain allocation methods.	9	L2 L2	CO5	PO1
с.	Explain the access matrix model used for protection purpose.	9	L2	CO5	PO1
	· · · · · · · · · · · ·			_	