U.S.N					

P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi)

Seventh Semester, B.E. - Computer Science and Engineering Semester End Examination; February - 2022 Machine Learning

Time: 3 hrs Max. Marks: 100

Course Outcomes

The Students will be able to:

- CO1: Students can Understand the different learning models
- CO2: Students can Analyze the different machine learning algorithm
- CO3: Students can build their own models using machine learning models.
- CO4: Students can know the methods and approaches to handle the machine learning algorithm
- CO5: Students can develop various learning methods

Note: I) PART - A is compulsory. Two marks for each question.

II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for Maximum of 18 marks from each unit.

Q. No.	Questions I: PART - A	Marks 10	BLs	COs	POs
I a.	List the features for a well defined learning problem.	2	L1	CO1	PO1,2
b.	Describe decision tree learning.	2	L2	CO2	PO1,2
c.	Mention different reasons of Bayesian learning methods relevant to	2	L2	CO3	PO1,2
	machine learning.				
d.	Define K-nearest neighbor learning.	2	L2	CO4	PO1,2
e.	Define prolog.	2	L2	CO5	PO1,2
	II : PART - B				
	UNIT - I	18			
1 a.	Explain different applications of machine learning which are successful.	9	L2	CO1	PO1,2,3
b.	Illustrate how a function approximation algorithm is chosen, while designing a learning system?	9	L3	CO1	PO1,2
c.	List and describe the unanswered issues of FIND-S algorithm.	9	L2	CO1	PO1,2
	UNIT - II	18			
2 a.	Write a decision tree for the concept of play tennis. Describe different characteristics that are suited for decision tree learning.	9	L3	CO1	PO1,2
b.	Explain hypothesis space search in decision tree learning along with its capabilities and limitations using ID3.	9	L2	CO2	PO1,2
c.	Describe the characteristics of appropriate problems for neural network learning.	9	L2	CO2	PO1,2

P18CS71				Page No 2		
	UNIT - III	18				
3 a.	Explain the features of Bayesian learning methods with example.	9	L2	CO3	PO1,2	
b.	Illustrate Brut force map learning algorithm.	9	L3	CO3	PO2,3	
c.	Describe maximum likelihood and least squared error hypothesis.	9	L2	CO3	PO1,2	
	UNIT - IV	18				
4 a.	List and describe different instance based learning methods with its advantages and disadvantages.		L2	CO4	PO1,2	
b.	Explain the issues and approaches (remarks) for applying K-nearest neighbor algorithm with example.	9	L2	CO4	PO1,2	
c.	Illustrate Radial basis functions.	9	L3	CO4	PO1,2	
	UNIT - V	18				
5 a.	Write and explain sequential covering algorithm for learning a disjunctive set of rules with example.	9	L3	CO5	PO1,2	
b.	Describe different key dimensions in the design space of learning rule sets.	9	L2	CO5	PO1,2	
c.	Explain learning sets of first order rules using FOIL.	9	L2	CO5	PO1,2	

* * * *