U.S.N

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

Seventh Semester, B.E. - Computer Science and Engineering Semester End Examination; February - 2022 Multicore Architecture and Parallel Programming

Time: 3 hrs Max. Marks: 100

Course Outcomes

The Students will be able to:

CO1: Analyze the salient features of different multicourse architectures.

CO2: Define fundamental concepts of parallel programming and its design issues.

CO3: Compare the different threading API'S.

CO4: Demonstrate the role of OpenMP and programming concept.

CO5: Analyse and Implement MPI programs.

Note: I) PART - A is compulsory. Two marks for each question.

II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for Maximum of 18 marks from each unit.

Q. No.	Questions	Marks	BLs	COs	POs
	I: PART - A	10			
I a.	Define concurrency.	2	L2	CO1	PO1,2
b.	What is synchronization?	2	L2	CO2	PO1,2
c.	Define POSIX threads.	2	L2	CO3	PO1,2
d.	List the different OpenMP environment variables.	2	L1	CO4	PO1,2
e.	Define message passing interface.	2	L2	CO5	PO1,2
	II : PART - B	90			
	UNIT - I	18			
1 a.	With a suitable diagram, explain the relationships between processors,				
	processes and threads in modern operating system. Also discuss the various mapping models used.	9	L4	CO1	PO1,2,3
b.	Explain briefly Amdahl's law applied to hyper threading technology and Gustafson's law.	9	L3	CO1	PO1,2
c.	What is virtualization? Describe the different virtualization used in modern computers.	9	L3	CO1	PO1,2
	UNIT - II	18			
2 a.	Explain the steps involved in error diffusion algorithm. Write a C language implementation of error diffusion algorithm.	9	L3	CO1	PO1,2
b.	Explain the concept of message passing model.	9	L3	CO2	PO1,2
c.	Explain the concepts of Fence and barrier in flow control based concepts.	9	L3	CO2	PO1,2

P18CS72			Page No 2	
	UNIT - III	18		
3 a.	Describe the various atomic operations performed by interlocked function.	9	L3	CO3 PO1,2
b.	With example, analyze the use of call back in thread pool to wait on events.	9	L4	CO3 PO2,3
c.	With an example, explain the use of Pthreads with semaphores.	9	L3	CO3 PO1,2
	UNIT - IV	18		
4 a.	With a suitable diagram, explain the concept of task queuing execution model.	9	L3	CO4 PO1,2
b.	List and explain the clauses provided by OpenMP standard to accomplish the data copy in and copy out operations.	9	L3	CO4 PO1,2
c.	What are the difficulties in debugging an OpenMP program? Mention the guideline for debugging OpenMp program.	9	L2	CO4 PO1,2
	UNIT - V	18		
5 a.	Discuss buffered blocking message passing operations with neat sketch.	9	L4	CO5 PO1,2
b.	Explain briefly about overlapping communication with computation.	9	L3	CO5 PO1,2
c.	Write a note on groups and communicators.	9	L5	CO5 PO1,2

* * * *