U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

Seventh Semester, B.E. - Computer Science and Engineering Semester End Examination; February - 2022 Cryptography and Network Security

Time: 3 hrs Max. Marks: 100

Course Outcomes

The Students will be able to:

CO1: Define cryptography and its principles

CO2: Explain Cryptography algorithms

CO3: Illustrate Public and Private key cryptography

CO4: Understand Key management, distribution and certification

CO5: Implementation authentication protocols and analyze IPSec

Note: I) PART - A is compulsory. Two marks for each question.

II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for Maximum of 18 marks from each unit.

Q. No.	Questions	Marks	BLs	COs	POs
	I: PART - A	10			
I a.	Distinguish between Block and Stream cipher.	2	L2	CO1	PO2
b.	What are the counter measures for timing attacks in RSA?	2	L2	CO2	PO2
c.	What is a nonce? How nonce is used in key distribution?	2	L2	CO3	PO2
d.	Differentiate between Transport mode and Tunnel mode.	2	L2	CO4	PO3
e.	What are the benefits of IPSec?	2	L2	CO5	PO3
	II : PART - B	90			
	UNIT - I	18			
1 a.	Differentiate between;				
	i) Active and passive attacks	9	L2	CO1	PO1,5
	ii) Data confidentiality and Data integrity			001	101,5
	iii) Substitution and Transposition				
b.	Use the play fair cipher to encipher the message "Life is full of				
	surprises". The secret key can be made by filling the first and part of				
	the second row the word "GUIDANCE" and filling the rest of the	9	L3	CO1	PO1,5
	matrix with the rest of the alphabet.				
	(Note: ignore the space in between words)				
c.	Explain the structure of DES in detail.	9			
	UNIT - II	18	L2	CO5	PO3
2 a.	Generate public and private keys by using RSA cryptosystem. Given				
	N = 77, $e = 13$, Encrypt the message $m = 5$ using RSA algorithm.	9	L3	CO2	PO1,2,4
	Decrypt the same.				

P18CS73			Page No 2		
b.	Explain Diffie-Hellman key exchange algorithm / protocol in detail.				
	And also Illustrate how this protocol suffers Man-in-the-Middle	9	L2	CO2 PO1,2,3	
	attack?				
c.	Differentiate between conventional and public key cryptosystem.	9	L3	CO2 PO1,2,4	
	UNIT - III	18			
3 a.	Explain the step involved in the distribution of unique master key by	0	1.0	CO2 PO1 2 2	
	using KDC.	9	L2	CO3 PO1,2,3	
b.	Explain the various ways of distributing public keys.	9	L2	CO3 PO1,2,3	
c.	Investigate the short comings of Kerberos version-4.	9	L2	CO3 PO1,2,3	
	UNIT - IV	18	L2	CO3 PO2	
4 a.	Explain SSH protocol stack.	9	L2	CO4 PO1,6	
b.	Discuss the phases of operation of IEEE 802.11i.	9	L2	CO4 PO1,6	
c.	Explain the Handshake protocol of SSL.	9	L2	CO4 PO1,6	
	UNIT - V	18			
5 a.	Explain the important services provided by PGP.	9	L2	CO5 PO1,3	
b.	Write a note on;				
	i) ESP header	9	L2	CO5 PO1,3	
	ii) Authentication Header protocol				
c.	Explain the working of S/MIME.	9	L2	CO5 PO1,3	

* * * *