U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

Seventh Semester, B.E. - Computer Science and Engineering Semester End Examination; February - 2022 Artificial Intelligence

Time: 3 hrs Max. Marks: 100

Course Outcomes

The Students will be able to:

- CO1: Understand how Artificial Intelligence & Intelligence Systems enables capabilities that are beyond conventional technology.
- CO2: Analyze how a heuristic state space search algorithms are used to solve complex problem.
- CO3: Analyze and design a rule-based expert system with tools.
- CO4: Design fuzzy-logic based controllers and explores their unique characteristics.
- CO5: Understanding of genetic algorithm and an outlook on the applications of genetic algorithm.

Note: I) PART - A is compulsory. Two marks for each question.

II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for Maximum of 18 marks from each unit.

	11) 11111 - B. Illiswer ung <u>1 wo</u> suo questions (from a, o, e) for inaximum of 10 marks from each unit.						
Q. No.	Questions	Marks	BLs	COs	POs		
Τ.	I: PART - A	10	1.0	CO1	DO2		
I a.	What is an artificial intelligence?	2		CO1			
b.	What is monotonic leaning?	2	L2	CO2	PO2		
c.	What is expert system?	2	L2	CO3	PO2		
d.	What is fuzzy logic?	2	L2	CO4	PO2		
e.	What is genetic algorithm?	2	L2	CO5	PO2		
	II : PART - B	90					
	UNIT - I	18					
1 a.	Explain the types of knowledge representation.	9	L2	CO1	PO2		
b.	What is predicate calculus? Convert the following statements to						
	predicate logic statements:						
	i) "Jane is the mother of Mary"	0	1.2	CO1	DO1		
	ii) "Tom is a cat and has a tail"	9	L3	CO1	POI		
	iii) "Energy gets a break once in a while"						
	iv) "There is somebody who knows everyone"						
c.	How do you categorize computer system with respect to artificial	0	1.0	CO1	DO1.0		
	intelligence?	9	L2	COI	PO1,2		
	UNIT - II	18					
2 a.	Explain the Heuristic search techniques using BFS.	9	L2	CO2	PO2		
b.	Describe the strategies for state space search.	9	L2	CO2	PO2		
c.	Classify and explain in brief the learning strategies.	9	L2	CO2	PO2		

P18CSO754			Page No 2			
	UNIT - III	18				
3 a.	Explain the expert system organization with a diagram.	9	L2	CO3	PO2	
b.	Explain the stages in the development of an expert system.	9	L2	CO3	PO1	
c.	Describe the categories of expert system tools.	9	L2	CO3	PO2	
	UNIT - IV	18				
4 a.	Explain the foundation of fuzzy systems.	9		CO4	PO2	
b.	Describe the various types of fuzzy measures.	9		CO4	PO2	
c.	Explain Defuzzification methods.	9		CO4	PO2	
	UNIT - V	18				
5 a.	Draw and explain the flowchart of genetic algorithms.	9		CO5	PO2	
b.	Explain the logic behind genetic algorithms.	9		CO5	PO2	
c.	Explain ANT colony system with its applications.	9		CO5	PO2	

* * * *