\square

P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belagavi)
 Third Semester, B.E. - Civil Engineering Semester End Examination; March / April - 2022 Basic Surveying

Time: 3 hrs
Max. Marks: 100

Course Outcomes

The Students will be able to:
CO1: Apply the knowledge of basic surveying and mathematics for measurements of distance and angles using conventional surveying equipments.
CO2: Conduct traversing to plot the area and locate the objects on the drawing using chain, tape, compass.
CO3: Prepare the contour plans to estimate area and volume and to determine distance \& elevation by tachometric surveying.
CO4: Interpretation of the data of leveling, theodolite surveying to measure the elevation and distances.
Note: I) PART - A is compulsory. Two marks for each question.
II) PART - B: Answer any Two sub questions (from a, b, c) for Maximum of $\mathbf{1 8}$ marks from each unit.
Q. No. Questions Marks BLs COs POs

I : PART - A 10

I a. Differentiate between plane surveying and geodetic surveying. 2
b. What is meant by balancing of Traverse? Mention its methods.
c. Define Mean Sea level and Line of Collimation.
d. Mention the characteristics of Contour line.
e. List the horizontal Axis and Face left observation.

II : PART - B
UNIT - I
1 a. What is ranging? Explain reciprocal method of ranging with neat sketch.
b. A line was measured by a 20 m chain which was accurate before starting the day's work. After chaining 900 m , the chain was found to be 6 cms too long. After chaining a total distance of 1575 m , the chain was found to be 14 cms too long. Find the true distance of the line.
c. Define surveying and explain the principles of surveying with neat sketches.

UNIT - II

2 a. Explain the following:
i) Dip and Declination
ii) True Meridian and Magnetic Meridian
iii) Fore bearing and Back bearing
b. Differentiate between prismatic compass and surveyors compass.

18
L1 CO1 PO1
2 L1 CO2 PO1
2 L1 CO2 PO1
2 L1 CO1 PO1
2 L1 CO2 PO1
90

9 L2 CO1 PO1

L2 CO1 PO1

9 L2 CO1 PO1

9 L2 CO1 PO1
$9 \mathrm{~L} 2 \mathrm{CO} 2 \mathrm{PO} 2,3$
c. The following data FB and BB were observed in traversing with a compass in a place were local attraction was suspected. Compute the correct bearings of the lines.

Line	FB	BB
AB	$38^{\circ} 30^{\prime}$	$219^{\circ} 15^{\prime}$
BC	$100^{\circ} 45^{\prime}$	$278^{\circ} 30^{\prime}$
CD	$25^{\circ} 45^{\prime}$	$207^{\circ} 30^{\prime}$
DE	$325^{\circ} 15^{\prime}$	$145^{\circ} 15^{\prime}$
EA	$190^{\circ} 30^{\prime}$	$10^{\circ} 15^{\prime}$

UNIT - III
3 a . Define the following terms:
i) Parallax
ii) Back sight
iii) Bench mark
iv) Height of instrument
v) Datum
b. Explain the temporary adjustment of Dumpy level.
c. The following staff readings were observed successively with a level, the instrument having been moved after third, sixth, eight readings: 2.228, 1.606, 0.988, 2.090, 2.864, 1.262, 0.602, 1.982, 1.044, 2.684 meters. Enter the above readings in a page of a level book and calculate the R.L. points by Rise and Fall method, if the first reading was taken with a staff held on a BM of 432.384 m .

UNIT - IV
4 a. Define contour and explain the characteristics of contour.
b. Explain the following:
i) Methods for determining volumes
ii) List the uses of contours
c. A railway embankment 400 m long is 12 m wide at the formation level and has a side slope of 2:1. The ground levels at every 100 m along the centre line are as follows:

Distance (m)	0	100	200	300	400
R.L.	204.8	206.2	207.5	207.2	208.3

[^0]The formation level at zero chainage is 207.0 m and the embankment has a rising gradient of 1 in 100 . Calculate the volume of earth work by,
i) Trapezoidal rule
ii) Prismoidal rule

UNIT - V

5 a. Define the following:
i) Axis of level tube
ii) Vertical axis
iii) Face left and Face right observation
$9 \quad \mathrm{~L} 2 \mathrm{CO} 2 \mathrm{PO} 2$
iv) Transiting
v) Swinging of telescope
vi) Centring
b. Derive distance and elevation formula for stadia tacheometry, when the staff held normal to the line of sight and both for an angle of elevation and angle of depression.
c. The Elevation of point ' P ' is to be determined by observations from two adjacent stations of a tacheometer. The staff was held vertically upon the point, and the instrument is fitted within an anallatic lens, the constant instrument being 100. Compute the elevation of the point ' P ' from the following data, taking both observations as equally trustworthy. Also calculate the distance of A and B from ' P '.

Ins. station	Height of axis	Staff point	Vertical angle	Staff readings	Elevation of station
A	1.42	P	$+2^{\circ} 24^{\prime}$	$1.230,2.055,2.880$	77.75 m
B	1.4	P	$-3^{\circ} 36^{\prime}$	$0.785,1.800,2.815$	97.135 m

[^0]: 9 L2 CO2PO1,2

