U.S.N

\square

P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belagavi)
 Third Semester, B.E. - Civil Engineering
 Semester End Examination; March / April - 2022
 Fluid Mechanics

Time: 3 hrs
Max. Marks: 100

Course Outcomes

The Students will be able to:
CO1: Apply the knowledge of basic science and mathematics to differentiate a fluid and a solid, understand fluid properties, differentiate pressure and pressure head, analyze the fluid particles at rest or in motion and to understand flow measurement phenomenon.
CO2: Formulate, interpret and analyze flow problems related with fluid particles either at rest or at motion.
CO3: Identify and quantify losses in a flow phenomenon for the efficient design of pipe line and various flow measuring devices.
CO4: Apply the knowledge of fluid mechanics in future to find efficient solutions to various problems related to civil engineering either as an individual or as a team member to satisfy the changing professional and societal needs.
Note: I) PART - A is compulsory. Two marks for each question.
II) PART - B: Answer any Two sub questions (from a, b, c) for a Maximum of $\mathbf{1 8}$ marks from each unit.

Questions
 I : PART - A

I a. Define the following terms and mention their units:
i) Specific mass
ii) Specific gravity
b. State Hydrostatic and Pascal's law.
c. State Bernoulli's equation as applied to fluid dynamics.

2 L1 CO1 PO1
d. Define hydraulic gradient line and total energy line.

2
L1 CO1 PO1
e. Define Notches and weirs.

II : PART - B
2 L1 CO1 PO1

1 a. Define the following terms with usual notations:
i) Newtonian and Non-Newtonian fluids
ii) Ideal and Real fluids
ii) Dynamic viscosity and Kinematic viscosity
b. A 600 mm squares plate weighing 245 N slides down an inclined plane at a slope of 1 in 2.4 with a uniform velocity of $0.30 \mathrm{~m} / \mathrm{s}$ with a 1 mm thick oil
$9 \quad \mathrm{~L} 3 \quad \mathrm{CO} 2 \mathrm{PO} 2$ film. Calculate the dynamic viscosity of the oil.
c. A liquid weighs $7.25 \mathrm{~N} / \mathrm{lt}$. Calculate unit weight, density, specific volume and relative density of the liquid.

UNIT - II

2 a. Critically differentiate between the following terms:
i) Atmospheric and gauge pressure
$9 \quad \mathrm{~L} 2 \mathrm{CO} 2 \mathrm{PO} 2$
ii) Simple and differential manometer
iii) Centroid and centre of pressure
b. In the arrangement shown in Fig. 2(b) determine the volume of ' h '

L2 CO1 PO1

9 L3 CO2 PO2

3 a. Critically differentiate the following terms:
i) Uniform and non-uniform flow
ii) Laminar and turbulent flow
iii) Rotational and irrotational flow
b. Write Euler's equations of motion along a stream line and integrate it to obtain Bernoulli's equations.
c. In a 45° bend a rectangular air duct of $1 \mathrm{~m}^{2} \mathrm{c} / \mathrm{s}$ area is gradually reduced to $0.5 \mathrm{~m}^{2}$ area. Calculate the magnitude and direction of force required to hold the air duct in position, if the velocity of flow at $1 \mathrm{~m}^{2}$ section is $10 \mathrm{~m} / \mathrm{s}$ and pressure is $30 \mathrm{kN} / \mathrm{m}^{2}$. Take specific weight of air as $0.0116 \mathrm{kN} / \mathrm{m}^{3}$.

L3 CO 2 PO 2

L3 CO 2 PO 2

UNIT - IV
4 a . Mention the expressions for major and minor losses in flow through pipes.
b. Enumerate the phenomenon of water hammer. List the factors affecting water hammer and mention the expressions when value is gradual and sudden closure.
c. The differences in water surface levels in two tanks, which are connected by three pipes in series of lengths $450 \mathrm{~m}, 255 \mathrm{~m}$ and 315 m and diameters $300 \mathrm{~mm}, 200 \mathrm{~mm}$ and 400 mm respectively is 18 m . Compute the flow rate of water if co-efficient of frictions are $0.0075,0.0078$ and 0.0072 respectively. Consider; i) Minor losses ii) Neglecting minor losses.

UNIT - V

5 a. Derive an error of 1% in the head measurement produces an error of 1.5% in the discharge over rectangular notch and produces an error of 2.5% in the discharge over a triangular notch.
b. A tank containing water is provided with sharp edged orifice of 7.5 mm in diameter. The head of water in the tank is 1.44 m above orifice. The jet strikes a wall 1.5 m away and 0.42 m vertically below the centre line of the contracted section of jet. The actual discharge through the orifice is measured to be 35 litres in 4 minutes.

Compute;
i) Orifice coefficients
ii) Power lost at the orifice
c. I) Define Cipolletti notch, list the advantages of Cipolletti notch over a trapezoidal notch.
II) Critically differentiate between the following terms:

9 L2 CO2 PO2
$9 \quad \mathrm{~L} 3 \mathrm{CO} 2 \mathrm{PO} 2$
$9 \quad \mathrm{~L} 3 \mathrm{CO} 3 \mathrm{PO} 2$
$9 \quad \mathrm{~L} 3 \mathrm{CO} 2 \mathrm{PO} 2$

L3 CO 4 PO 2

9 L2 CO1 PO1
i) Orifice and mouth piece
ii) Notches and weirs

