	5			Pag	ge No.		
	U.S.N						
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) Third Semester, B.E Civil Engineering Make-up Examination; May - 2022 Fluid Mechanics							
Time: 3	hrs		Ма	x. Ma	rks: 10		
CO1: Ap pro une	Course Outcomes ents will be able to: ply the knowledge of basic science and mathematics to differentiate a fluid operties, differentiate pressure and pressure head, analyze the fluid particl derstand flow measurement phenomenon. rmulate, interpret and analyze flow problems related with fluid particles eith	les at re	st or	in moti	ion and		
CO3: Ide	entify and quantify losses in a flow phenomenon for the efficient design						
CO4: Ap civ soc	asuring devices. ply the knowledge of fluid mechanics in future to find efficient solutions t il engineering either as an individual or as a team member to satisfy t rietal needs. PART - A is compulsory. Two marks for each question.		-				
	PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for a Maximum of I				unit.		
Q. No.	Questions I : PART - A	Marks 10	BLs	COs	POs		
I a.	Define fluid. List any four fluid properties.	2	L1	CO1	PO1		
b.	State Pascal's Law.	2	L1	CO2	PO2,3		
0	Write the Bernoulli's equation for real fluids.	2	L1	CO1	PO1		
с.							
d.	List the causes of major energy losses and minor energy losses in pipe flow.	2	L1	CO1	PO1		
d.		2 2		CO1 CO1	PO1 PO1		
d.	pipe flow. List out hydraulic coefficients and establish relationship of the same. II : PART - B	2 90			_		
d. e.	pipe flow. List out hydraulic coefficients and establish relationship of the same. II : PART - B UNIT - I	2 90 18	L1	CO1	PO1		
d. e. 1 a.	pipe flow. List out hydraulic coefficients and establish relationship of the same. II : PART - B UNIT - I With a neat sketch, explain classification of fluids.	2 90	L1		_		
d. e.	pipe flow. List out hydraulic coefficients and establish relationship of the same. II : PART - B UNIT - I With a neat sketch, explain classification of fluids. i) State Newton's law of viscosity.	2 90 18	L1	CO1	PO1		
d. e. 1 a.	pipe flow. List out hydraulic coefficients and establish relationship of the same. II : PART - B UNIT - I With a neat sketch, explain classification of fluids. i) State Newton's law of viscosity. ii) An oil film thickness 1.5 mm is used for lubrication between a	2 90 18	L1	CO1	PO1		
d. e. 1 a.	pipe flow. List out hydraulic coefficients and establish relationship of the same. II: PART - B UNIT - I With a neat sketch, explain classification of fluids. i) State Newton's law of viscosity. ii) An oil film thickness 1.5 mm is used for lubrication between a square plate of size 0.9 m x 0.9 m and an inclined plane having	2 90 18	L1 L2	C01	PO1		
d. e. 1 a.	 pipe flow. List out hydraulic coefficients and establish relationship of the same. II: PART - B UNIT - I With a neat sketch, explain classification of fluids. i) State Newton's law of viscosity. ii) An oil film thickness 1.5 mm is used for lubrication between a square plate of size 0.9 m x 0.9 m and an inclined plane having an angle of inclination 20°. The weight of the square is 392.4 N 	2 90 18 9	L1 L2	C01	PO1 PO1		
d. e. 1 a.	 pipe flow. List out hydraulic coefficients and establish relationship of the same. II: PART - B UNIT - I With a neat sketch, explain classification of fluids. i) State Newton's law of viscosity. ii) An oil film thickness 1.5 mm is used for lubrication between a square plate of size 0.9 m x 0.9 m and an inclined plane having an angle of inclination 20°. The weight of the square is 392.4 N and it slides down the plane with a uniform velocity of 0.2 m/s. 	2 90 18 9	L1 L2	C01	PO1 PO1		
d. e. 1 a. b.	 pipe flow. List out hydraulic coefficients and establish relationship of the same. II: PART - B UNIT - I With a neat sketch, explain classification of fluids. i) State Newton's law of viscosity. ii) An oil film thickness 1.5 mm is used for lubrication between a square plate of size 0.9 m x 0.9 m and an inclined plane having an angle of inclination 20°. The weight of the square is 392.4 N and it slides down the plane with a uniform velocity of 0.2 m/s. Calculate the dynamic viscosity of the oil. 	2 90 18 9	L1 L2	C01	PO1 PO1		
d. e. 1 a.	 pipe flow. List out hydraulic coefficients and establish relationship of the same. II: PART - B UNIT - I With a neat sketch, explain classification of fluids. i) State Newton's law of viscosity. ii) An oil film thickness 1.5 mm is used for lubrication between a square plate of size 0.9 m x 0.9 m and an inclined plane having an angle of inclination 20°. The weight of the square is 392.4 N and it slides down the plane with a uniform velocity of 0.2 m/s. 	2 90 18 9	L1 L2 1,3	C01	PO1 PO1		

L3 CO2 PO2,3

18

9

UNIT - II

- 2 a. State and prove hydrostatic pressure law.
 - b. i) Define manometer and mention its types.
 - ii) Differential manometer is connected at the two points A and B as shown in Fig. Q2(b). At B air pressure is 7.448×10^4 N/m²(abs). Find the absolute pressure at A.

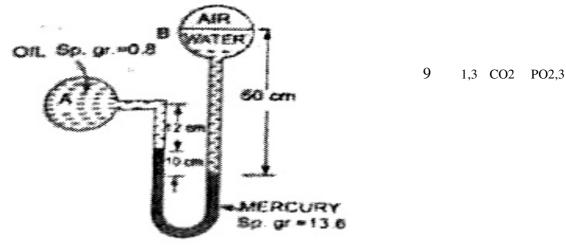


Fig.Q2(b)

c. Fig. Q2(c) shows a gate having a quadrant shape of radius 3.0 m.Determine the resultant force due to water per meter length of the gate. Find also the angle at which total force will act.

	WATER SURFACE OHINGE	9	L3	CO2	PO2,3
	Fig.Q2(c)	10			
	UNIT - III	18			
3 a.	Define Euler's equation of motion and derive an expression for it. How will you obtain Bernoulli's equation from it?	9	L2	CO2	PO2,3
b.	 i) Define and derive an expression for continuity equation for incompressible fluids. ii) A 300 mm diameter pipe carries oil of specific gravity 0.8 at a velocity of 2.0 m/s. At another section of the diameter is 200 mm. Calculate the velocity at the section and also mass rate of 	9	L3	CO2	PO2,3
c.	flow of oil. A horizontal venturimeter with inlet diameter 300 mm and throat diameter 150 mm is used to measure the flow of oil of sp. Gr. 0.8. The discharge of oil through venturimeter is 50 Lps. Find the reading of the oil-mercury differential manometer. Take $C_d = 0.98$. Contd 3	9	L3	CO2	PO2,3

P18CV3	35		Page No 3		
	UNIT - IV	18			
4 a.	Define equivalent pipe. Derive an expression for equivalent pipe.	9	1,3 CO2 PO2		
b.	A horizontal pipe of diameter 400 mm is suddenly contracted to a				
	diameter of 200 mm. The pressure intensities in the large and				
	smaller pipe are given as $14.7415 \times 10^4 \text{ N/m}^2$ and $12.753 \times 10^4 \text{ N/m}^2$	9	L3 CO3 PO3		
	respectively. If $C_C = 0.62$. Determine the loss of head due to				
	contraction. Also determine the rate of flow of water.				
c.	i) With neat sketch, explain the phenomenon of water hammer.				
	ii) A valve is provided at the end of a cast iron pipe of diameter				
	150 mm and of thickness 10 mm. The water is flowing through				
	the pipe, which is suddenly stopped by closing the valve. Find	9	L3 CO4 PO5,9,11		
	the maximum velocity of water, when the rise of pressure due				
	to sudden closure of valve is $196.2 \times 10^4 \text{ N/m}^2$ and E for cast				
	iron pipe as $11.722 \times 10^{10} \text{ N/m}^2$.				
	UNIT - V	18			
5 a.	Define hydraulic coefficients. With a neat sketch, obtain an	9	L3 CO2 PO2,3		
	expression for coefficient of velocity C_V experimentally.	-	20 002 102,0		
b.	i) Differentiate between notch and weir.				
	ii) Water flows through a triangular right angled weir first and				
	then over a rectangular weir of 1 m width. The discharge				
	coefficients of the triangular and rectangular weir are 0.6 and	9	1,3 1,4 PO1,9,11		
	0.7 respectively. If the depth of water over the triangular				
	weir is 360 mm. Calculate the depth of water over the				
	rectangular weir.				
c.	Define and derive an expression for discharge over a broad crested				
	weir and classify the same with respect to length and head	9	L3 CO2 PO2,3		
	over the crest.				
	over the crest.				

* * *