\square

P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belagavi)
 Third Semester, B.E. - Civil Engineering
 Semester End Examination; March/April - 2022
 Strength of Materials

Time: 3 hrs
Max. Marks: 100

Course Outcome

The Students will be able to:
CO1: Apply the knowledge of basic science and mathematics to understand the concepts of stress at a point, strain at a point, and the stress-strain relationships for linear, elastic, homogeneous, isotropic materials.
Co2: Analyse structural members subjected to tension, compression, torsion, bending, combined stresses and internal pressure using the fundamental concepts of stress, strain, elastic behavior of materials and sketch BMD and SFD.
Co3: Compute the stresses and strains in members subjected to tension, compression, torsion, bending, combined stresses and internal pressure.
Co4: Apply the knowledge of strength of materials in future to work effectively either as an individual or as a team member to satisfy the changing professional and societal needs.
Note: I) PART - A is compulsory. Two marks for each question.
II) PART - B: Answer any Two sub questions (from a, b, c) for Maximum of $\mathbf{1 8} \mathbf{~ m a r k s}$ from each unit.
Q. No.

Questions
I : PART - A
I a. Draw the stress-strain curve for mild steel under tension with salient points.
b. Define principal stresses and their planes.
c. Mention the relationships between Bending moment, shear force and intensity of loading with usual notations.
d. Define section modulus.
e. Write the relationship between twisting moment, shear force and the intensity of loading.

II : PART - B

UNIT - I
90
18
1 a. Derive the expression for the deformation for rectangular bar of uniformly varying thickness.
b. A member $A B C D$ is subjected to point loads P_{1}, P_{2}, P_{3} and P_{4} as shown in Fig. 1(b).

9 L3 CO1 PO1,2

Calculate the force P_{2} necessary for equilibrium, if $P_{1}=45 \mathrm{kN}$, $P_{3}=450 \mathrm{kN}$ and $\mathrm{P}_{4}=130 \mathrm{kN}$. Determine the total elongation of the member assuming the modulus of elasticity to be $2.1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
c. A concrete column of $400 \mathrm{~mm} \times 400 \mathrm{~mm}$ carrying an axial load of 270 kN is reinforced with 6 numbers of 12 mm dia bars located at each corners. Determine the stress is steel and concrete. Take $E_{S}=2.1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}, \mathrm{E}_{\mathrm{C}}=1.5 \times 10^{4} \mathrm{~N} / \mathrm{mm}^{2}$ and the length of column is 300 mm .

UNIT - II

2 a. Derive an expression for maximum and minimum principal stresses in a 2-dimensional stress system.
b. With usual notations prove Lame's equation for thick cylinders.
c. A thin cylinder shell 1 m in dia and 3 m long has a metal thickness of 10 mm . If it is subjected to an internal pressure of $3 \mathrm{~N} / \mathrm{mm}^{2}$. Determine the changes in length, diameter and volume. Take $\mathrm{E}=210 \mathrm{GPa}$ and $\mu=0.3$

UNIT - III

3 a. Analyze a cantilever beam subjected to uniformly distributed load of w/unit length over entire span of length 'L'. Also draw SFD and BMD.
b. Draw the shear force and bending moment diagram for the beam shown in Fig. Q3(b)

c. Draw BMD and SFD for the beam shown in Fig. 3(c) Also find the point of contra flexure.

Fig. Q 3(c)
UNIT - IV
4 a . Derive the equation for pure bending with usual notations.

9 L3 CO3 PO1,2

9 L3 CO3 PO1, 2
9 L3 CO1 PO1,2
$9 \mathrm{~L} 2 \mathrm{CO} 2 \mathrm{PO} 1,2$

9 L2 CO2 PO1,2

9 L3 CO2 PO1,2

18

9 L3 CO3 PO1,2

P18CV36

b. A beam of I-section shown in Fig. Q4(b) has overall depth of 250 mm . The flanges are 125 mm wide and 12.5 mm thick. The web is 5 mm thick. The beam rests fully on support 6 m apart. Find the maximum load that may be applied at a point 1.5 m from left support, producing a maximum flange stress not greater than $80 \mathrm{MN} / \mathrm{m}^{2}$.

9 L1 CO4 PO1,2

9 L4 CO4 PO1,2

9 L2 CO5 PO1,2

9 L2 CO5 PO1,2 constant $=\frac{1}{1600}$
c. A hollow circular shaft with a 250 mm external diameter and thickness of 25 mm transmits power at 180 rpm . The angle of twist over a length of 3 m was found to be 0.72°. Calculate the power transmitted on the maximum shear stress induced in the section. Take modulus of rigidity $C=84 \mathrm{GN} / \mathrm{m}^{2}$

