U.S.N

\square

P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belagavi) Fifth Semester, B.E. - Civil Engineering Semester End Examination; February / March - 2022 Water Supply and Treatment
Time: 3 hrs Max. Marks: 100

Course Outcomes

The Students will be able to:
CO1: Apply knowledge of mathematics to forecast population of community to determine total quantity of water to meet demands of community.
CO2: Apply knowledge of basic science for testing and analyze the drinking water quality parameters from public health consideration as per standards.
CO3: Design various water treatment units to remove selected impurities in raw water.
CO4: Analyze the community pipe network of water distribution.
Note: I) PART - A is compulsory. Two marks for each question.
II) PART - B: Answer any Two sub questions (from a, b, c) for Maximum of $\mathbf{1 8}$ marks from each unit.
Q. No.

Questions

I : PART - A
I a. Explain any two equations used to calculate the quantity of water for fire fighting.
b. Explain why fluoride is referred as two edge sword?
c. Explain briefly the principle involved in continuous flow type tank.
d. What is the reason for maintaining residual chlorine in chlorination process?
e. Explain the functions of service reservoirs.

II : PART - B

UNIT - I
1 a. With a neat sketch, explain the variation of water demand and its effects in the design of water supply components.
b. With a neat sketch, explain river intake structure.
c. Water is to be pumped to an elevated reservoir at 78 m at a constant rate of $8,00,000$ liters per hour from a water reservoir 3 m deep and maximum water level at 31 m . The distance is 1300 m . Give the economical diameter of the rising main and the horse power of the pump. Neglect minor losses and take $f=0.04$.

UNIT - II

2 a. Explain physical and chemical properties of water.
b. Explain in brief the common water borne diseases.
c. With a neat sketch, explain cascade aerator. 10

Marks BLs COs POs

1818

L2 CO1

PO 2

9 L2 CO1 PO1

9
L3 CO1 PO2 18
$9 \quad \mathrm{~L} 2 \mathrm{CO} 3 \mathrm{PO} 2$
$9 \quad \mathrm{~L} 2 \quad \mathrm{CO} 2 \mathrm{PO} 2$
$9 \quad \mathrm{~L} 2 \quad \mathrm{CO} 3 \mathrm{PO} 3$

UNIT - III

3 a . Two primary settling basins are 30 m in diameter with a 2.2 m side water depth. Single effluent weirs are located on the peripheries of the tank. For the water flow of $28000 \mathrm{~m}^{3} / \mathrm{d}$, calculate;
i) Surface area and volume
ii) Overflow rate in $\mathrm{m}^{3} / \mathrm{m}^{2} / \mathrm{d}$
iii) Detention time in hours
iv) Weir loading in $\mathrm{m}^{3} / \mathrm{m} . \mathrm{d}$
b. Explain in brief the different types of common coagulants for water treatment.
c. Design a plain sedimentation basin to treat 3.5 million liters of water per day so as to settle at least 80% of the particles of grain size 0.002 cm or more. Assume suitable data required.

UNIT - IV

4 a . A filter unit is 4.5 m by 9.0 m . After filtering 10000 cubic meters per day in 24 hour period. The filter is back washed at a rate of $10 \mathrm{~L} / \mathrm{m}^{2} / \mathrm{sec}$ for 15 min . Compute the average filtration rate, quantity and percentage of treated water used in washing and the rate of wash water flow in each trough. Assume four troughs.
b. Explain disinfection methods with the usage of excess lime and ozone.
c. With a neat sketch, explain break point chlorination.

UNIT - V
5 a . With a neat sketch, explain dead end system along with advantages and disadvantages.
b. Explain the working principle of reverse osmosis.
c. Explain the gate valve and air valve used in water pipe lines.

L3 CO3
PO3

9
L2 CO3
PO3

9 L3 CO3 PO3

18

9
L3 CO3
PO3

9
L2 CO3 PO3

L2 CO4
PO2

L3 CO3 PO3
9
L2 $\mathrm{CO} 4 \quad \mathrm{PO} 2$

