U.S.N

\square

P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belagavi) Fifth Semester, B.E. - Civil Engineering
Semester End Examination; February / March - 2022
Analysis of Indeterminate Structures
Time: 3 hrs
Max. Marks: 100

Course Outcomes

The Students will be able to:
CO1: Analyze the redundant truss structures by strain energy method.
CO2: Analyze the continuous beams and frames by Slope Deflection method.
CO3: Analyze the continuous beams and frames by moment distribution method and Kani's method and understanding its iterative nature of obtaining solutions.
CO4: Analyze the continuous beams and frames by flexibility and stiffness matrix method of system approach.
Note: I) PART - A is compulsory. Two marks for each question.
II) PART - B: Answer any $\underline{\text { ONE }}$ full question (from a, b) for Maximum of $\mathbf{1 8}$ marks from each unit.

Q. No.	$\begin{gathered} \text { Questions } \\ \text { I : PART - A } \end{gathered}$	Marks 10	BLs	COs	POs
I a.	Define statically determinate structure with example.	2	L2	CO1	PO1,2
b.	Define slope and write the boundary conditions for fixed end and hinged end.	2	L1	CO 2	PO1,2
c.	Define stiffness factor and distribution factor.	2	L1	CO 3	PO1,2
d.	Write the advantages of kani's method.	2	L1	CO3	PO1,2
e.	Define flexibility coefficient $f_{i j}$ and stiffness coefficient $k_{i j}$.	2	L1	CO4	PO1,2
	II : PART - B	90			
	UNIT - I	18			

1 a . Find the forces in all the members for the truss shown in Fig. Q1.a. The cross sectional area is $2000 \mathrm{~mm}^{2}$ for all the members and $E=200 \mathrm{GPa}$.

b. Find the forces in all the members of the pin jointed plane frame shown in Fig. Q1.b. Take cross sectional area for all the members as $10 \mathrm{~cm}^{2}$ and $E=200 \mathrm{GPa}$.

L4 CO1 PO1,2

UNIT - II
2 a. Analyse the continuous beam shown in Fig. Q2.a, by slope deflection method. Draw SFD and elastic curve.

b. Analyze the rigid jointed frame shown in Fig. Q2.b, by slope deflection method. Sketch BMD and the deflected shape of the frame.

UNIT - III
b. Analyze the frame shown in Fig. Q3b, by moment distribution method. Draw BMD and elastic curve.

UNIT - IV
4 a. Analyze the continuous beam shown in Fig. Q4.a, by Kani's method. Draw shear force diagram and bending moment diagram. Take EI as constant.

Fig. Q4:a

b. Analyze the portal frame shown in Fig. Q.4.b by, Kani's method.

Sketch the BMD and elastic curve.

Fig. Q4-b
UNIT - V
L4 CO4 PO1,2

5 a. Analyze the portal frame loaded as shown in Fig. Q5a. Using flexibility matrix method, draw BMD and elastic curve. Take EI as constant.

Fig Q, $5 \cdot a$

b. Analyze the continuous beam shown in Fig. Q5.b using stiffness matrix method. Draw SFD and BMD. Take $E=200 \mathrm{GPa}$ and $I=80,000 \mathrm{~cm}^{4}$.

