
P1	8 C	V54
	U U	

Contd... 2

P18CV54			Page No 2
	ii) A reinforced concrete beam of effective cross section 300 mm and		
	500 mm consists of 3 bars of 16mm diameter on tension side.		
	Determine the superimposed load the beam can carry over an	12	L2 CO2 PO2,3,4
	effective span of 5 m. Use M20 concrete and Fe415 steel. The		
	beam is simply supported.		
	UNIT - II	18	
2 a.	i) With a neat sketch, explain any two modes of shear failure of	4	L2 CO2 PO2,3,4
	beam.		
	ii) Design the vertical shear reinforcement for a simply supported		
	beam carries a uniformly distributed load of 70 kN/m. The steel		
	at the tension side of the section consist of 4 bars of 25mm		PO2,3,4
	diameter which are continued to support. Assume M20 concrete	14	L4 CO2 1,2,8
	and Fe415 steel. Consider the effective length = 5 m , width of		-,-,-
	beam = 300 mm and overall depth of beam = 500 mm . Adopt		
	effective cover = 50 mm .		
b.	Determine the reinforcement required for a beam of size		
	300 mm x 600 mm subjected to a factored bending moment of	of	PO2,3,4,6
	150 kN-m, factored shear force of 100 kN and factored torsional	18	L4 CO2 ,8,12
	moment of 50 kN-m. Use M20 concrete and Fe415 steel. Sketch the		,0,12
	reinforcement details.		
2	UNIT - III	18	
3 a.	Design a cantilever beam projecting from column. The clear		
	projection is 1.5 m carries a characteristic live load of 25 kN/m. Use	18	L4 CO2 PO2,3,4,8
	M20 concrete and Fe415 steel. Apply necessary checks and sketch		,9,12
	the reinforcement details. Consider width of $column = 230$ mm.		
b.	Design an intermediate T-beam of effective span 5 m simply		
	supported supporting slab of 125 mm thick. The ribs below the slab		
	are 230 mm wide and 300 mm deep. The slab and beam cast as act	10	PO2,3,4,6
	together. Determine the reinforcement for the T-beam to carry an	18	L4 CO2 PO2,3,4,6 ,7,8,9,12
	imposed load of 5 kN/m ² and floor finish of 1.5 kN/m ² . Use M20		
	concrete and Fe415 steel. The beams are spaced at 3.5 m centre to		
	centre. Apply necessary checks and sketch reinforcement details.	40	
4 a.	UNIT - IV Design a simply supported slab of clear size 3.5 m x 8.0 m to carry	18	
	live load 3 kN/m ² and floor finish 0.75 kN/m ² . Width of supporting		PO2,3,4,
	wall = 230 mm . Use M20 concrete and Fe415 steel. Apply necessary	18	L4 CO3 9.12
	checks. Sketch the reinforcement details.		- ,

P18CV54		Page No 3
b. Design a dog legged stair case for building in a room measuring		
3.0 m x 6.0 m (clear dimensions) Floor to floor height is 3.5 m.		
Stairs are supported on brick walls 230 mm thick at the end	10	PO2,3,4,6
of landings. Use M20 concrete and Fe 415 steel. Consider live	18	L4 CO3 PO2,3,4,6 ,7,8,9,12
load = 5.0 kN/m ² , riser =150 mm and tread = 300 mm. Sketch the		
reinforcement details.		
UNIT - V	18	
5 a. i) Differentiate between long and short columns.	4	L1 CO4 PO2,3
ii) Design rectangular column of 4.6 m long restrained in position		
and direction at both ends to carry an axial load of 1500 kN. Use	14	L1 CO4 PO2,3
M20 concrete and Fe 415 steel. Sketch the reinforcement details.		
b. Design a square footing of uniform thickness for an axial loaded		
column of size 450 mm x 450 mm. The safe bearing capacity of soil	18	PO2,3,4,6
is 190 kN/m ² , load on column is 850 kN. Use M20 concrete and Fe		L4 CO4 PO2,3,4,6 ,7,8,9,12
415 steel. Sketch the reinforcement details.		

* * * *