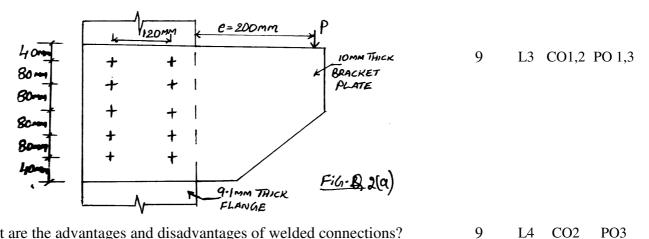

P1	8CV72		Рад	ge No.	1					
	U.S.N									
	P.E.S. College of Engineering, Mandya - 5	71 40	1		<u> </u>					
(An Autonomous Institution affiliated to VTU, Belagavi)										
	Seventh Semester, B.E Civil Engineering)								
	Semester End Examination; February - 2022									
	Design of Steel Structures									
Tir	ne: 3 hrs	M	ax. M	arks:	100					
	Course Outcomes									
The Students will be able to:										
CC	D1: Apply the knowledge on steel as a structural material to understand its area of principle involved as per IS code	applicati	on and	the de	esign					
principle involved as per IS code. CO2: Apply limit state design method for the connection of steel members by bolting and welding.										
CO3: Apply limit state design method for the design of tension and compression members and understand the										
	behavior of steel members under axial tension and compression	, .	C .	. 1						
C	D4: Ability to apply the concepts of plastic behavior of steel members for the plastic a and to apply the limit state design method for the design of beams.	inalysis o	f struci	tural sy	stem					
No	te: I) PART - A is compulsory. Two marks for each question.									
	II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for Maximum of 18 ma	rks from	each u	nit.						
	III) Use of IS:800-2007 and steel tables are permitted.	0								
Q. No	Questions	Marks	BLs	COs	POs					
	I : PART - A	10								
Ιa	. Define efficiency of joints.	2	L1	CO1	PO1,3					
b	. List any four types of welds used for connections.	2	L1	CO2	PO3					
С	. Define Gusset plate.	2	L1	CO3	PO3					
d	. Define column base.	2	L1	CO4	PO3					
e	. List any four types of beams based on the cross section used.	2	L1	CO5	PO3,4					
	II : PART - B	90								
	UNIT - I	18								
1 a	. Explain the failure criterion for steel.	9	L2	CO1	PO1,3					
1										

b. A single bolted double cover butt joint is used to connect two plates which are 8 mm thick. Assuming 16 mm φ bolts of grade 4.6 and cover plates to be of 6 mm thick. Calculate the strength of the joint for the Fig. Q 1(b).


9 L3 CO1,2 PO1,3

Contd... 2

P18CV72			Page No 2
c.	An ISA 100 mm \times 100 mm \times 10 mm carries a factored tensile force of		
	100 kN. It is to be jointed with a 12 mm thick gusset plate using HSFG		
	bolts of 16 mm of 8.8 grades. Design a high strength bolted joint. When,	9	L4 CO1,2 PO1.3
	i) No slip is permitted		
	ii) Slip is permitted		

UNIT - II

2 a. Determine the safe load 'P' that can be carried by the joint shown in Fig. Q2(a). The bolts used are 20 mm diameter of grade 4.6. The thickness of the flange of I-section is 9.1 mm and that of bracket plate is 10 mm.

18

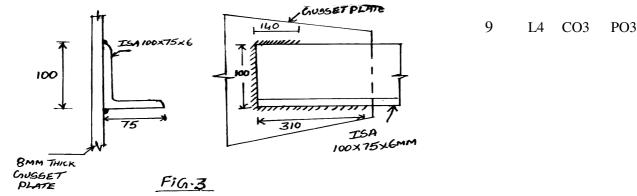
9

18

9

L4

L4


CO₂

CO3

PO₃

PO3

- b. What are the advantages and disadvantages of welded connections? 9 L4
- c. A tie member consisting of an ISA $80 \times 50 \times 8$ mm of Fe-410 grade steel is welded to a 12 mm thick gusset plate at site. Design the welds to transmit load equal to the design strength of the members. Provide two side welds.
- **UNIT III** 3 a. Explain the various modes of failure of tension member with neat sketch. b. A single unequal angle $100 \times 75 \times 6$ mm is connected to a 8 mm thick gusset plate at the ends by 4 mm weld as shown in Fig. 3. Determine the design tensile strength of the angle, if guest plate is connected to 100 mm leg. The yield strength and ultimate strength of steel used are $f_y = 250$ N/mm² and $f_u = 400$ N/mm².

Contd... 3

P18CV72			Page No 3		
c.	An ISHB450@855.43 N/m is to be used as a short column carrying axial				
	load. Calculate the compressive strength. Take;	9	L4	CO3	PO3
	i) Fe-410 steel with $f_y = 250 \text{ N/mm}^2$				
	ii) Fe-540 steel with $f_y = 410 \text{ N/mm}^2$				
	UNIT - IV	18			
4 a.	Design a suitable double channel built-up column 8 m long to carry a				
	factored axial load of 1100 kN. Both ends of the columns are restrained	18	L4	CO3	PO3
	in position but not in direction. Provide single lacing system. Assume Fe-	10	L4	005	F03
	410 grade steel and bolts of 4.6 grade.				
b.	Design a slab base for an ISHB350@661.2 N/m to carry a factored load				
	of 1000 kN. Adopt M25 concrete and Fe-415 grade steel for foundation.	18	L4	CO3	PO3
	Adopt welding for the connection of column to base plate.				
	UNIT - V	18			
5 a.	Analyse a continuous beam ABCD with the loads as shown in Fig. 4.				
	Also draw the plastic moment diagram.				
	A $2m E 2n F 2m fm G F 2m G G F G G G G G G G G G G G G G G G G $	18			

b. Design a cantilever beam which is built into concrete wall and carrying a load of 25 kN/m and live load of 10 kN/m. The span of beam is 5 m.
18 L4 CO4 PO3,4 Assume the beam to be laterally supported throughout.

* * * *