P18CV741		P	age No	o 1		
U.S.N						
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) Seventh Semester, B.E Civil Engineering Semester End Examination; February - 2022 Design of Bridges Time: 3 hrs Max. Marks: 100						
Course Outcomes		1110000	<i>inu 1</i> 0.	100		
The Students will be able to: CO1: Identify site locations for the bridges. CO2: Understand the IRC loadings. CO3: Analyse and design of slab culvert. CO4: Analyse and design of box culvert and T Beam Bridge. <u>Note:</u> I) PART - A is compulsory. Two marks for each question. II) PART - B: Answer any <u>One</u> sub questions (from a, b) for Maximum of I III) IS456, SP-16 and IRC 21 codes are permitted.	18 marks from	n each ui	nit.			
Q. No. Questions I : PART - A	Mark 10	s BLs	COs	POs		
I a. List the components of bridges.	2	L1	CO1	PO1		
b. Explain equation used for calculating effective width for a sin concentrated load.	ngle 2	L1	CO3	PO1		
c. Write schematic diagram showing the dimensions of vertical horizontal clearance required for highway traffic.	and 2	L1	CO2	PO1		
d. List the three load conditions to develop maximum moments in culvert.	box 2	L1	CO3	PO1		
e. List the conditions when Courbon's method is applicable designing of Tee-beam bridges.	e in 2	L1	CO4	PO1		
II : PART - B	90					
UNIT - I	18					
 i) The following are the costs of one pier and one superstructure s of multiple span bridge for various span lengths. The cost of su structure span excludes the costs of railing, and flooring syst Calculate the economic span. 	uper	L2	CO1	PO1,2		
Span in metres 4 8 12 15 Super structure cost in Rs. 1700 7000 16000 2450 Substructure cost in Rs. 22200 23200 23000 23600				, .		
ii) List the assumptions made in derivation for the economic spanb. Determine the design discharge at a bridge site alter computing maximum discharge by,		L2	CO1	PO1,2		
i) Empirical methodii) Rational methodiii) Area-velocity method for the following data:Contdot	18 1 2	L2	CO2	PO1,2		

P18CV741

2

3

4

			-		
	Catchment = 160 km^2				
	Distance of site from $coast = 12 \text{ km}$				
	Distance of critical point to bridge site = 16 km				
	Difference in elevation between the critical point and the bridge site = 96 m				
	Peak intensity of rainfall = 60 mm/h				
	Surface of catchment is loam, largely cultivated C/s area of stream of MFL at bridge site = 120 m^2				
	Wetted pelimeter of stream at MFL at bridge site = 90 m				
	Stream condition-clear straight banks, fails condition				
	Slope of stream = $1/500$				
	UNIT - II	18			
2 a.	Explain with neat sketch, IRC loading classification for road bridges	18	L3	CO3	PO1,2
	and culverts. Write ground constant dimensions for class A loading.				
b.	Explain the impact loads to be considered in road bridges and culvert				
	design. Write the live load combinations of loading arrangements to	18	L3	CO3	PO1,2
	be adopted for single, double and triple lane design.				
	UNIT - III	18			
3 a.	Design a deck slab for the following particulars:				
	Clear span: 5.5 m; width of carriage = 7.5 m				
	Width of the foot path : 1 m on either side	10	ТЛ	CO^{2}	DO2 0
	Wearing coat : 100 mm	18	L4	CO3	PO3, 9
	Loading : IRC class AA (Tracked)				
	Materials: M35 Concrete and Fe415 steel.				
b.	Design a R.C. slab culvert for the following data:				
	Clear span = 5m				
	Carriage way width : 7.5 m				
	Width of bearing = 0.4 m				
	Kerbs on either side = 600×300 mm	18	L4	CO3	PO3,9
	Wearing coat = 56 mm thick				
	Exposure condition : moderate				
	Live load = IRC class AA (wheeled)				
	Grade of steel = 415 , M_{25} concrete				
	UNIT - IV	18			
la.	Design a box culvert having inside dimensions 4m x 4m for the				
	following data:				
	Live load = class AA tracked vehicle	10	. .	G Q Q	
	Density of soil = 18 kN/m^3 ; $\phi = 30^\circ$ Width of bridge deak = 8.7 m	18	L4	CO3	PO3,9
	Width of bridge deck = 8.7 m SBC = 120 kN/m^2				
	M_{30} concrete ; Fe ₄₁₅ steel				
	Contd 3				

P18CV741 Page No 3			o 3		
b.	Design a box culvert having inside dimensions of 3 m \times 3 m. This culvert in subjected to a dead load of 14000 N/m ² and a live load of				
	IRC class AA tracked vehicle. Assume the unit weight of soil to be	18	L4	CO3	PO3,9
	18000 N/m ³ . The angle of repose of soil is 30°. Use M35 concrete				
	and Fe415 steel. Road width is 7.5 m. Span is 3.3 m.				
	UNIT - 5	18			
5 a.	A T-beam bridge has to be provided across a channel having the				
	following data. Design the bridge deck. (i) Design Interior				
	longitudinal girders.				
	Span = 14 m				
	Road = $NH (2 dams)$	18	L4	CO4	PO3,9
	Footpath = $1m$ width on either side				
	Loading = 1 RC class AA (tracked)				
	Material = M40 Concrete, Fe415 Steel				
	No. of longitudinal girders : 3				
b.	A RCC T-beam and slab deck has the following data:				
	Effective span of girder = 16 m				
	Clear width of Road way = 7.5 m				
	Width of kerbs = 600 mm				
	Thickness of wearing $coat = 80 \text{ mm}$				
	No. of main girders $= 4$	18	L4	CO4	PO3, 9
	Spacing of main girders = 2.5 m				
	Spacing of Cross girders = 4 m				
	Type of loading : IRC class (Tracked vehicle)				
	Materials: M20 grade concrete and Fe415 grade HYSD bars.				
	Design only interior deck slab for flexure and check for shear.				

* * * *