U.S.N

\square

P.E.S. College of Engineering, Mandya - 571401
 (An Autonomous Institution affiliated to VTU, Belagavi) Seventh Semester, B.E. - Civil Engineering Semester End Examination; February - 2022 Open Channel Hydraulics

Time: 3 hrs
Max. Marks: 100

Course Outcomes

The Students will be able to:
CO1: Apply the knowledge of fluid mechanics, conservation equations for mass, momentum, and energy to develop a strong knowledge of open channel flow.
CO2: Analyze and compute flow profiles using various methods.
CO3: Develop and apply mathematical relationships for hydraulic jumps, critical, uniform, gradually-varying flow and rapidly varied flow.
CO4: Knowledge of open channel flow in future to work effectively either as an individual or as a team member to satisfy the changing professional and societal needs.

Note: I) PART - A is compulsory. Two marks for each question.
II) PART - B: Answer any Two sub questions (from a, b, c) for Maximum of $\mathbf{1 8}$ marks from each unit.

Q. No.	Questions	Marks BLs COs	POs
	I : PART - A	$\mathbf{1 0}$	

1 a. Differentiate between Energy correction factor and Momentum correction factor.
b. Define Critical flow and Section factor for Critical flow.
c. List the methods of computing GVF profiles.
d. Give the condition for Repelled jump and Submerged jump.
e. List the different types of spillways.

UNIT - I
1 a . Briefly explain the various types of flow in case of open channels.
b. Show that the hydraulic exponent ' N ' for Uniform flow is, $N=\frac{2 y}{3 A}\left[5 T-2 R \frac{d p}{d y}\right]$ and hence, determine hydraulic exponent $\quad 9 \quad$ L2 \quad CO1 \quad PO1 values for rectangular channel section.
c. Water flows at a uniform depth of 2 m in a trapezoidal channel having bottom width 6 m and side slopes $2 \mathrm{H}: 1 \mathrm{~V}$. Compute the normal critical slope and the discharge corresponds to this depth of flow and slope. Take $\eta=0.025$.
UNIT - II

2 a. Define specific energy and specific energy curve. Also, derive an expression for critical depth and critical velocity.

2 L1 CO1 PO1

P18CV743

Page No... 2
b. List the assumptions made in deriving GVFE and hence derive the equation $\frac{d y}{d x}=\frac{S_{0}-S_{f}}{1-\frac{Q^{2} T}{g A^{3}}}$.
c. A rectangular channel 8 m wide has a uniform depth of flow 2.5 m and has a bed slope of 1 in 3500 . If the water surface at a section is raised by 0.8 m due to weir constructed at the downstream end of the channel, determine the water surface slope with respect to horizontal at this section. Assume Manning's $N=0.02$.

UNIT - III

3 a . Briefly explain the direct step method in solving GVF equation.
b. A wide rectangular channel carries a discharge of 3 cumecs $/ \mathrm{m}$ width on a slope of 1 in 1000. A weir is constructed across the channel which increases the depth to 2 m . Calculate the distance from the weir to a point where depth is 1.75 m . Use Bresse's method. Take $\mathrm{C}=45$ and Manning's $N=0.025$.
c. A rectangular channel 2 m wide carries a discharge of $2 \mathrm{~m}^{3} / \mathrm{s}$. The bed slope is 0.004 . At a certain section the depth of flow is 1 m . Calculate the distance of section downstream where the depth of flow is 0.9 m . Solve by single step method. Assume manning's $N=0.014$.

UNIT - IV

4 a Define the term hydraulic jump. Classify hydraulic jump based on initial Froude's number. Also mention the uses of hydraulic jump.
b. Derive the relation between Initial depth $\left(y_{1}\right)$ and sequent depth $\left(y_{2}\right)$ for a hydraulic jump in a horizontal rectangular channel in terms of Froude number of flow before jump.
c. A sluice gate discharges water into a horizontal rectangular channel with a velocity of $6 \mathrm{~m} / \mathrm{s}$ and depth of flow is 0.4 m The width of the channel is 8 m . Determine whether a hydraulic jump will occur and if so, find its height and loss of energy per kg of water. Also determine the power lost in the hydraulic jump.
$9 \quad$ L2 CO3
PO2,3

9 L3 CO3
PO2,3

9 L2 CO2 PO1,2
$9 \quad \mathrm{~L} 3 \quad \mathrm{CO} 2 \mathrm{PO} 2,3$
$9 \mathrm{~L} 3 \mathrm{CO} 2 \mathrm{PO} 2,3$
$9 \quad \mathrm{~L} 2 \quad \mathrm{CO} 3 \quad \mathrm{PO} 2$

9 L2 CO3 PO2

9 L3 CO3,4 PO5

UNIT - V

5 a . Define the following terms:
i) Stilling Basin
ii) Chute blocks
iii) End sill
iv) Baffle piers
v) Ogee Spillway
vi) Syphon Spillway
b. Define stilling basin. Briefly explain the type-II and type-IV with neat sketches.
c. Design a suitable section (only D / S profile) for the overflow portion of a concrete gravity dam having the downstream face sloping at a slope of $0.7 \mathrm{H}: 1 \mathrm{~V}$. The design discharge for spillway is 6,000 cumecs. The height of the spillway above the river bed is 60 m . The effective length of the spillway may be taken as 50 m . Take $\mathrm{C}=2.2$.

18
$9 \quad \mathrm{~L} 2 \quad \mathrm{CO} 3 \quad \mathrm{PO} 2$
$9 \quad$ L3 CO3,4 PO5

