P18CV743
11001110

P18CV	Page .	No 1						
	U.S.N							
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) Seventh Semester, B.E Civil Engineering Semester End Examination; February - 2022 Open Channel Hydraulics								
Time: 3 hrs Max. Marks: 100								
 Course Outcomes The Students will be able to: CO1: Apply the knowledge of fluid mechanics, conservation equations for mass, momentum, and energy to develop a strong knowledge of open channel flow. CO2: Analyze and compute flow profiles using various methods. CO3: Develop and apply mathematical relationships for hydraulic jumps, critical, uniform, gradually-varying flow and rapidly varied flow. CO4: Knowledge of open channel flow in future to work effectively either as an individual or as a team member to satisfy the changing professional and societal needs. 								
	() PART - A is compulsory. Two marks for each question.	10	fuerra	a ch unit				
Q. No.	<i>PART - B:</i> Answer any <u>Two</u> sub questions (from a, b, c) for Maximum of D Questions	Marks	-		POs			
1 a.	I : PART - A Differentiate between Energy correction factor and Momentum	10						
	correction factor.	2	L1	CO1	PO1			
b.	Define Critical flow and Section factor for Critical flow.	2	L1	CO2	PO1			
с.	List the methods of computing GVF profiles.	2	L1	CO2	PO1			
d.	Give the condition for Repelled jump and Submerged jump.	2	L1	CO3	PO1			
e.	List the different types of spillways.	2	L1	CO3	PO1			
II : PART - B								
1 a.	UNIT - I Briefly explain the various types of flow in case of open channels.	18 9	L2	CO1	PO1			
b.	Show that the hydraulic exponent ' N ' for Uniform flow is,	,		001	101			
	$N = \frac{2y}{3A} \left[5T - 2R \frac{dp}{dy} \right]$ and hence, determine hydraulic exponent	9	L2	CO1	PO1			
	values for rectangular channel section.							
c.	Water flows at a uniform depth of 2 m in a trapezoidal channel							
	having bottom width 6 m and side slopes 2H:1V. Compute the normal critical slope and the discharge corresponds to this depth of	9	L2	CO1	PO1			
flow and slope. Take $\eta = 0.025$.								
2 a.	UNIT - II Define specific energy and specific energy curve. Also, derive an expression for critical depth and critical velocity.	18 9	L2	CO1	PO1,2			

P18CV	743			Page I	No 2
b.	List the assumptions made in deriving GVFE and hence derive the				
	equation $\frac{dy}{dx} = \frac{S_0 - S_f}{1 - \frac{Q^2 T}{gA^3}}.$	9	L2	CO3	PO2,3
c.	A rectangular channel 8 m wide has a uniform depth of flow 2.5 m				
	and has a bed slope of 1 in 3500. If the water surface at a section is				
	raised by 0.8 m due to weir constructed at the downstream end of	9	L3	CO3	PO2,3
	the channel, determine the water surface slope with respect to				
	horizontal at this section. Assume Manning's $N = 0.02$.				
	UNIT - III	18			
3 a.	Briefly explain the direct step method in solving GVF equation.	9	L2	CO2	PO1,2
b.	A wide rectangular channel carries a discharge of 3 cumecs / m				
	width on a slope of 1 in 1000. A weir is constructed across the				
	channel which increases the depth to 2 m. Calculate the distance	9	L3	CO2	PO2,3
	from the weir to a point where depth is 1.75 m. Use Bresse's				
	method. Take $C = 45$ and Manning's $N = 0.025$.				
c.	A rectangular channel 2 m wide carries a discharge of 2 m^3/s . The				
	bed slope is 0.004. At a certain section the depth of flow is 1 m.				
	Calculate the distance of section downstream where the depth of	9	L3	CO2	PO2,3
	flow is 0.9 m. Solve by single step method. Assume				
	manning's $N = 0.014$.				
	UNIT - IV	18			
4 a	Define the term hydraulic jump. Classify hydraulic jump based on	9	1.0	CO2	DOJ
	initial Froude's number. Also mention the uses of hydraulic jump.	9	L2	CO3	PO2
b.	Derive the relation between Initial depth (y_1) and sequent depth (y_2)				
	for a hydraulic jump in a horizontal rectangular channel in terms of	9	L2	CO3	PO2
	Froude number of flow before jump.				
c.	A sluice gate discharges water into a horizontal rectangular				
	channel with a velocity of 6 m/s and depth of flow is 0.4 m The				
	width of the channel is 8 m. Determine whether a hydraulic jump	9	L3	CO3,4	PO5
	will occur and if so, find its height and loss of energy per kg of				
	water. Also determine the power lost in the hydraulic jump.				

Contd... 3

P18CV743

P18CV743				Page No 3		
		UNIT - V	18			
5 a.	Define the following terms:					
	i) Stilling Basin	ii) Chute blocks	9	L2	CO3	PO2
	iii) End sill	iv) Baffle piers	7	L2	005	
	v) Ogee Spillway	vi) Syphon Spillway				
b.	Define stilling basin. Brief	ly explain the type-II and type-IV with	9	L2	CO3	PO2
	neat sketches.		9	L2	005	
c.	Design a suitable section (only D/S profile) for the overflow portion of a concrete gravity dam having the downstream face					
	sloping at a slope of 0.7H:1V. The design discharge for spillway is				CO2 4	PO5
	6,000 cumecs. The height	t of the spillway above the river bed	9 bed		CO3,4	POJ
	is 60 m. The effective lengt	h of the spillway may be taken as 50 m.				
	Take C = 2.2.					

* * * *