

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)
Seventh Semester, B.E. - Civil Engineering
Semester End Examination; February - 2022
Advanced Foundation Design

Time: 3 hrs Max. Marks: 100

Course Outcomes

The Students will be able to:

CO1: Apply the knowledge of Geology and geotechnics to differentiate shallow & deep foundation.

CO2: Analyze shallow and deep foundations for civil engineering structures.

CO3: Evaluate Design shallow and deep foundation for civil engineering structures.

CO4: Interpret data to select suitable foundation for expansive soil from safety consideration.

Note: I) PART - A is compulsory. Two marks for each question.

II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for Maximum of 18 marks from each unit.

Q. No.	Questions	Marks	BLs	COs	POs
	I : PART - A	10			
1 a.	Define Uniform settlement and Differential settlement.	2	L1	CO1	PO1
b.	Write about engineering news formula and Hiley's formula.	2	L1	CO2	PO1
c.	Define tilts and shifts in well foundation.	2	L1	CO3	PO1
d.	Define free swell and differential free swell index on expansive soil.	2	L1	CO3	PO1
e.	Define degree of freedom.	2	L1	CO4	PO1
	II : PART - B	90			
	UNIT - I				
1 a.	Explain the different types of foundation settlements.	9	L2	CO1	PO1
b.	With neat sketch explain the types of shallow foundation.	9	L2	CO1	PO1
c.	A square footing is to be constructed on deep deposit sand at a depth				
	of 0.9 m to carry load of 250 kN with factor of safety 2.5. The				
	ground water level may rise to ground level during rainy season.	9	L3	CO1	PO1
	Determine the size of footing. Assume saturated unit weight of sand				
	as 20.5 kN/m ³ , $N_r = 32$, $N_q = 34$.				
	UNIT - II				
2 a.	Explain how the pile load capacity is determined by using static formulas?	9	L2	CO2	PO1, 2
b.	Explain the classification of pile based on materials.	9	L2	CO2	PO1,2
c.	A 12 m long and 300 mm diameter pile is driven in a uniform				
	deposits of soil having $\phi = 30^{\circ}$, water tater table is at greater depth				
	and not likely to rise. The average dry unit weight soil is 18kN/m ³ .	9	L3	CO2	PO1,2
	Take N_q =13.5 and $K=2$ calculate safe load capacity with				
	F.O.S. = 2.5.				

P18CV744			Page No 2					
UNIT - III								
3 a.	Describe the various components of well foundation with neat	9	L2	CO3	PO1,4			
	sketches indicating the function of each.							
b.	Discuss the various kinds of forces likely to act on a well foundation.	9	L2	CO3	PO1,4			
c.	Explain in detail the sinking of well.	9	L2	CO3	PO1,4			
	UNIT - IV							
4 a.	List the types of caissons and explain the advantages and	9	L2	CO3	PO1,2			
	disadvantages of pneumatic caissons.	7						
b.	What are the different methods of foundation treatment for structure	9	L2	CO3	PO1,2			
	on expansive soil? Explain any one.							
c.	Write a short note on;							
	i) Free swell	9	L2	CO3	PO1,2			
	ii) CNS							
	iii) Swell pressure							
UNIT - V								
5 a.	With a neat sketch, explain degree of freedom of a block foundation.	9	L2	CO4	PO1,2			
b.	Explain the general criteria for design of machine foundation.	9	L2	CO4	PO1, 2			

L2 CO4 PO1, 2

9

* * * *

c. Explain the types of machine foundation.