

given input signal Fig. Q(1.1).

- b. Draw the circuit diagram for a voltage divider configuration of MOSFET. 2 L2 CO1 PO1
- c. Find V_0 in the circuit shown in Fig. Q.(1.3). Let $R_f = 10 \text{ k}\Omega$, $R_I = 2 \text{ k}\Omega$ and

 $R_2 = 5 \mathrm{k}\Omega.$

d. Realize XOR gate using 4 NAND gates.

L2 CO2 PO2

2

2

L3

CO3 PO2

 e. The total power content of an AM signal is 1000 W. Determine the power being transmitted at carrier frequency and at each side bands when 2 L2 CO2 PO2 modulation is 100%.

P18EC15				Page No 2			
	II : PART - B	90					
	UNIT - I	18					
1 a.	Sketch and explain the forward and reverse V-I characteristics of a						
	germanium diode. A silicon diode and germanium diodes are connected in						
	series with a diode forward resistance of 0.1 Ω and 0.56 Ω for silicon and	9	L2	CO2	PO2		
	germanium diodes respectively. For a DC supply of 25 V, determine the						
	forward current through the diodes.						
b.	With the help of a neat diagram, explain the working of full wave bridge	9	L2	CO2	PO2		
	rectifier. Also write the expressions for I_{dc} and I_{rms} .)	L	02	102		
c.	Sketch and explain the reverse V-I characteristics of a Zener diode.						
	A Zener of $V_Z = 6$ V is used with a DC supply of 15V in a loaded Zener						
	voltage regulator. The resistance in series with input is 200 Ω . Zener has	9	L2	CO2	PO2		
	$I_{Zmin} = 10$ mA and $P_{Zmax} = 0.5$ W. Calculate the minimum value of load						
	resistance.						
	UNIT - II	18					
2 a.	Discuss the construction and characteristics of n-channel depletion type	9	L2	CO2	PO2		
	MOSFET with relevant diagrams.	-	22	002	102		
b.	Draw the symbol of enhancement type NMOSFET clearly showing the						
	terminals of it. Explain the construction and working of it. Also draw its	9	L2	CO2	PO2		
	drain characteristics marking various regions of operation.						
c.	With the help of a neat circuit diagram, explain FET phase shift oscillator	9	L2	CO2	PO2		
	and hence get the expression for the frequency of oscillation.	2					
	UNIT - III	18					
3 a.	Explain how opamp can be used as a 3-inut inverting adder. Also write						
	the expression for its output voltage. Hence design a circuit to obtain the	9	L2	CO3	PO3		
	following output voltage;	-					
	$V_0 = -[0.5 V_1 + 0.8 V_2 + 2 V_3]$. Assume $R_f = 10 \text{ k}\Omega$.						
b.	Draw the circuit of an inverting opamp integrator and write the expression						
	for output voltage. Explain its working with neat waveforms considering	9	L2	CO2	PO2		
	the input to be square waveform.						
c.	(i) In an opamp, when $V_1 = 0.5 \text{ mV}$, $V_2 = -0.5 \text{ mV}$, the output is 8 V when						
	$V_1 = V_2 = 1$ mV, the output is 12 mV. Calculate its CMRR in dB.	6	L2	CO3	PO3		
	The voltage V_1 is non-inverting and V_2 is inverting input.						
	(ii) An inverting opamp amplifier has an input of $-1V$ and power supply						
	is ± 12 V. If the feedback resistor $R_f = 20$ k Ω what value of input	3	L3	CO3	PO3		
	resistor is required to get an output of 5 V?						
	Countral 2						

P18EC15 Page No 3					
	UNIT - IV	18			
4 a.	(i) If $F = \overline{AB} + \overline{C} + \overline{D} + \overline{E}$. Find the expression for \overline{F} .	3			
	(ii) Simplify the following expression and realize the same using NAND		L2 CO4 PO3		
	gates: $Z = A\overline{B}C + B + B\overline{D} + AB\overline{D} + \overline{A}C$	6			
b.	Write the circuit diagram for full adder using two half adder. Explain with truth table. Also write the equation for sum and carry.	9	L2 CO4 PO2		
c.	(i) $(9275)_{10} = (?)_{16}$ (11001.011) ₂ = (?) ₁₀ (ii) 5. In (24) = (.27) = (.17) = (.17) = (.17)	4	L2 CO4 PO2		
	(ii) Subtract $(24)_{10}$ from $(17)_{10}$ using 2's complement method and express the binary result in decimal.	5			
	UNIT - V	18			
5 a.	With the help of a neat diagram, explain amplitude modulation in detail.	9	L2 CO5 PO3		
b.	What is digital communication? Explain the advantages of digital communication over analog communication.	9	L2 CO5 PO3		
c.	Explain how a call is made from a mobile phone to another mobile phone.	9	L2 CO4 PO2		

* * *