TT C 3T					
U.S.N					ł
C 1					1

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

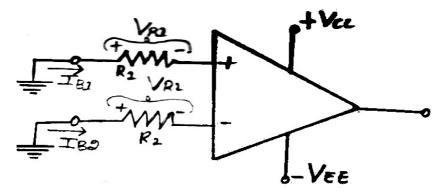
Third Semester, B.E. - Electronics and Communication Engineering Semester End Examination; March / April - 2022 Analog Electronic Circuits

Time: 3 hrs Max. Marks: 100

Course Outcomes

The Students will be able to:

- CO1 Apply the knowledge of physics to describe the operation and characteristics of Op-Amps.
- CO2 Discuss the working of op-amp applications, signal generators, voltage regulators, ADC, DAC and PLL.
- CO3 Analyze the frequency response, stability and applications of op-amps.
- CO4 **Design** the different op-amp applications circuits, signal generators, voltage regulators, ADC, DAC for a given specifications.
- CO5 Work as individual or in groups to model different op-amp circuits using simulation tools.


<u>Note</u>: I) PART - A is compulsory. Two marks for each question.

II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for Maximum of 18 marks from each unit.

Q. No.	Questions	Marks	BLs COs POs
	I: PART - A	10	
I a.	Define CMRR.	2	L1 CO1 PO1
b.	Draw the circuit diagram of inverting Schmitt trigger.	2	L1 CO1 PO1
c.	Draw the circuit diagram of diode-capacitor peak detector.	2	L1 CO2 PO1
d.	Draw the circuit diagram of first order law pass filter.	2	L1 CO3 PO1
e.	Write the expression for output voltage for 5- bit R-2R DAC.	2	L3 CO4 PO2
	II : PART - B	90	
	UNIT - I	18	

- 1 a. The circuit comprising 741 op-amp has $R_1 = R_2 = 22 \text{ k}\Omega$ with a resistor tolerance of $\pm 20\%$. Determine the maximum input effect voltage due to,
 - i) The 741 specified input offset voltage
 - ii) The 741 input offset current
 - iii) The resistor tolerance

From the datasheet: $V_{i(offset)} = 5 \text{ mV}$ maximum; $I_{i(offset)} = 200 \text{ nA}$ maximum

Using a 741 op-amp design a non-inverting amplifier to have a voltage gain of approximately 50. The signal amplitude is 15 mV. For 741 9 L3 CO1 PO3 $I_{B(max)} = 500$ nA. Draw the circuit diagram.

Contd... 2

L3 CO1 PO3

Design a capacitor coupled voltage follower using 741 operational amplifier. The lower cutoff frequency for the circuit is to be 50 Hz, and the load resistance $R_L = 5.6 \text{ k}\Omega$, $I_{B(max)} = 500 \text{ nA}$. Draw the circuit.

9 L3 CO1 PO3

18

UNIT - II

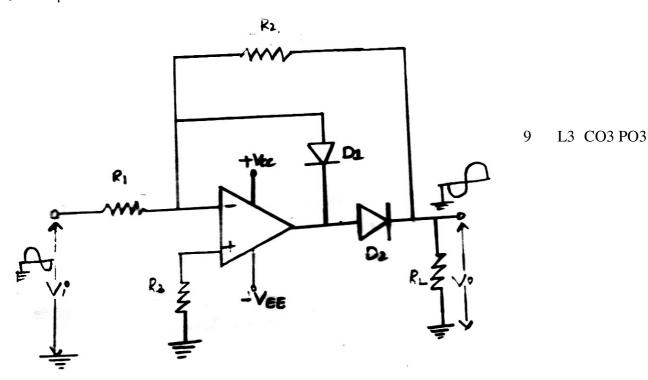
2 a. i) Calculate the slew rate limited cutoff frequency for a voltage follower circuit using a 741 op-amp if the peak of sine wave output is to be 5 V.

ii) Determine the maximum peak value of the output amplitude for the 741 voltage follower circuit to operate at the 800 kHz unity gain cutoff frequency.

9 L2 CO2 PO2

- iii) Calculate the maximum peak value of sine wave output voltage that can be produced by the amplifier with 8 kHz cut-off frequency.
- b. State and explain the circuit stability precaution.

9 L2 CO2 PO2


c. With neat circuit diagram and relevant waveforms explain the working of op-amp based inverting Schmitt trigger circuit.

9 L2 CO3 PO2

UNIT - III

18

3 a. Design a non-saturating precision half wave rectifier as in figure to produce a 2 V peak output from a sine wave input with a peak value of 0.5 V and frequency of 1 MHz. Use a bipolar op-amp with a supply voltage of \pm 12 V, $I_1 = 500 \,\mu\text{A}$.

- b. With neat diagram, explain the working of voltage follower peak detector
- 9 L2 CO2 PO2
- c. With neat diagram, explain the working of 555 monostable multivibrator.
- 9 L2 CO3 PO2

P18EC32		Page No 3	
	UNIT - IV	18	
4 a.	With neat circuit diagram, explain the working of triangular / rectangular wave generator.	9	L2 CO4 PO2
b.	Draw the circuit diagram of second order low pass filter. Design the circuit		
	to have a cutoff frequency of 1 kHz. Use Op-amp 741. $I_{B(max)}$ for op-amp 741	9	L3 CO3 PO3
	is 500 nA.		
c.	Draw the circuit diagram of voltage regulator with a current limiting circuit.		
	Illustrate how the circuit can be used for short circuit protection with the	9	L2 CO2 PO2
	help of characteristic curve of current limiting circuit.		
	UNIT - V	18	
5 a.	With neat diagram, explain the working of digital RAMP ADC. Draw the relevant waveform.	9	L2 CO2 PO1
b.	Explain the operation of 3-bit R-2R ladder D/A converter. Write the		
	expression for output voltage. Show the magnitude and direction of current	9	L2 CO4 PO2
	with $R_1 = 10 \text{ k}\Omega$ and $R_2 = 5 \text{ k}\Omega$.		
c.	Explain the operation of PLL system with neat block diagram and relevant waveform.	9	L2 CO4 PO1