\square

P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belagavi)
Third Semester, B.E. - Electronics and Communication Engineering Semester End Examination; March / April - 2022

Digital Electronic Circuits
Time: 3 hrs
Max. Marks: 100

Course Outcomes

The Students will be able to:
CO1: Ability to apply the knowledge of mathematics and science to understand the operation of logic circuits and performance parameters.
CO2: Ability to apply the simplification techniques/methods to optimize and implement the digital functions/circuits.
CO3: Ability to analyze the given logic circuit based on the knowledge of digital elements.
CO4: Ability to design a combinational and sequential logic circuit for the given requirements/specifications.
CO5: Ability to understand and design the State machines with state graphs for sequential design.
Note: I) PART - A is compulsory. Two marks for each question.
II) PART - B: Answer any Two sub questions (from a, b, c) for Maximum of $\mathbf{1 8}$ marks from each unit.
Q. No.

Questions

I : PART - A
I a. Implement the expression $y=a b+c d$ using only NAND gates.
b. Using 4-bit parallel adder, draw the schematic of a logic circuit to obtain BCD equivalent of EXCESS-3.
c. Derive the characteristic equation for T-flip-flop.
d. A 4-bit ripple counter has 4 flip-flops A, B, C, D. The first being flip-flop A and the last being flip-flop D. The input clock frequency is 20 kHz . The output of flip-flops BCD are fed to a NAND gate whose output is fed to CLR (clear) terminals of flip-flops. Determine the frequency of output at flip-flop D.
e. Write the state diagram for D flip-flop.

Marks BLs COs POs

10

2 L4 CO1 PO1

2 L3 CO3 PO2

2 L2 CO1 PO1

L3 CO3 PO2

L2 CO1 PO1

II : PART - B

UNIT - I
1 a. Convert the following Boolean functions into canonical form and express as a sum of min terms and as a product of max terms respectively.

9 L3 CO1 PO1
i) $f_{1}(a, b, c)=,a b \bar{c}+\bar{b}$
ii) $f_{2}(x, y, z)=(x y+z)(y+x z)$
b. Simplify and find the minimal sums and the minimal products for the following Boolean function using Karnaugh map method
$9 \quad \mathrm{~L} 3 \mathrm{CO} 2 \mathrm{PO} 2$
$f(a, b, c, d)=\sum \mathrm{m}(0,1,2,5,8,15)+\sum \mathrm{d}(6,7,10)$.
c. Find the prime implicants and essential prime implicants for the following Boolean function using Karnaugh map method
$f(a, b, c, d)=\sum \mathrm{m}(0,1,3,4,5,9,11,13,15)$.
Realize the final minimal expression using basic gates.

UNIT - II
2 a. Design and implement a circuit that accepts 2 unsigned 2-bit numbers and provides 3 outputs. The inputs are $\mathrm{A}_{1} \mathrm{~A}_{0}$ and $\mathrm{B}_{1} \mathrm{~B}_{0}$. The outputs are $\mathrm{A}=\mathrm{B}$, $\mathrm{A}>\mathrm{B}$ and $\mathrm{A}<\mathrm{B}$.
b. Implement the following function using $8: 1$ multiplexer and external gates required if any;
$f(a, b, c, d)=\sum \mathrm{m}(1,2,6,7,9,11,12,14,15)$.
c. Implement the following Boolean functions using 3 to 8 line decoder:
$f_{1}(a, b, c)=\sum \mathrm{m}(0,1,6,7) \quad f_{2}(a, b, c)=\sum \mathrm{m}(1,2,5,7)$

UNIT - III

3 a. Explain the following:
i) SR flip-flop operation using required timing diagram
ii) Race around problem and its elimination
b. Implement the following:
i) 3-bit parallel data storage using D-flip-flops
ii) Frequency division by using JK-flip-flops
iii) 2-bit counting ($0,1,2,3$) using T-flip-flops
c. Construct the following:
i) JK flip-flops using SR-flip-flops
ii) D-flip-flops using T- flip-flops

UNIT - IV
4 a. Design and implement a synchronous counter to sequence,
$0 \rightarrow 4 \rightarrow 1 \rightarrow 2 \rightarrow 6 \rightarrow 0$ using positive edge triggered T-flip-flops.
b. Draw the block level schematic diagram of 4-bit SISO and PISO shift register and explain their operation with timing diagram.
c. Draw the block diagram of memory and its environment. Describe the read and write operation with appropriate information transfer diagram.

UNIT - V

5 a. Design a sequence detector using D-flip-flop to detect sequence ending with 101.
b. A sequential circuit has one input (X) and one output (Z). The circuit examines groups for four consecutive inputs and produces an output $Z=1$, if the input sequence 0101 or 1001 occurs. The circuit resets after every four inputs. Find the Mealy state graph.
c. Design a sequential Mealy circuit which converts an NRZ-coded bit stream to a Manchester-coded bit stream.

