	U.S.N]			
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) Third Semester, B.E Electronics and Communication Engineering Semester End Examination; March / April - 2022 Digital Electronic Circuits								
Time:	3 hrs	Max. I	Marks	s: 100				
 Course Outcomes The Students will be able to: CO1: Ability to apply the knowledge of mathematics and science to understand the operation of logic circuits and performance parameters. CO2: Ability to apply the simplification techniques/methods to optimize and implement the digital functions/circuits. CO3: Ability to analyze the given logic circuit based on the knowledge of digital elements. CO4: Ability to design a combinational and sequential logic circuit for the given requirements/specifications. CO5: Ability to understand and design the State machines with state graphs for sequential design. 								
	I) PART - A is compulsory. Two marks for each question. II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for Maximum of 18 marks fro	om each	unit.					
Q. No.		Marks		COs	POs			
I a.	Implement the expression $y = ab + cd$ using only NAND gates.	2	L4	CO1	PO			
b.	Using 4-bit parallel adder, draw the schematic of a logic circuit to obtain BCD equivalent of EXCESS-3.	2	L3	CO3	POź			
c.	Derive the characteristic equation for T-flip-flop.	2	L2	CO1	PO			
d.	A 4-bit ripple counter has 4 flip-flops A, B, C, D. The first being flip-flop A							
	and the last being flip-flop D. The input clock frequency is 20 kHz. The output	2	L3 (CO3 1	CO3 PO2			
	of flip-flops BCD are fed to a NAND gate whose output is fed to CLR (clear)	2						
	terminals of flip-flops. Determine the frequency of output at flip-flop D.							
e.	Write the state diagram for D flip-flop.	2	L2	CO1	PO			
	II : PART - B UNIT - I	90 18						
1 a.	Convert the following Boolean functions into canonical form and express as a	10						
	sum of min terms and as a product of max terms respectively.	9	L3	CO1	PO			
	i) $f_1(a,b,c,) = ab\bar{c} + \bar{b}$ ii) $f_2(x,y,z) = (xy+z)(y+xz)$							
b.	Simplify and find the minimal sums and the minimal products for the							
	following Boolean function using Karnaugh map method	9	L3	CO2	PO2			
	$f(a, b, c, d) = \sum m(0, 1, 2, 5, 8, 15) + \sum d(6, 7, 10).$							
c.	Find the prime implicants and essential prime implicants for the following							
	Boolean function using Karnaugh map method	0	ТА	CO2	ΦΟ			
	$f(a, b, c, d) = \sum m(0, 1, 3, 4, 5, 9, 11, 13, 15).$	9	L4	002	rU			
	Realize the final minimal expression using basic gates.							

P18 E	C33	Pa	ge No 2
UNIT - II		18	
2 a.	Design and implement a circuit that accepts 2 unsigned 2-bit numbers and		
	provides 3 outputs. The inputs are A_1A_0 and B_1B_0 . The outputs are $A = B$,	9	L4 CO4 PO3
	A > B and $A < B$.		
b.	Implement the following function using 8:1 multiplexer and external gates		
	required if any;	9	L4 CO4 PO3
	$f(a, b, c, d) = \sum m(1, 2, 6, 7, 9, 11, 12, 14, 15).$		
c.	Implement the following Boolean functions using 3 to 8 line decoder:	0	L 4 CO4 DO2
	$f_1(a, b, c) = \sum m(0, 1, 6, 7)$ $f_2(a, b, c) = \sum m(1, 2, 5, 7)$	9	L4 CO4 PO3
	UNIT - III	18	
3 a.	Explain the following:		
	i) SR flip-flop operation using required timing diagram	9	L2 CO3 PO2
	ii) Race around problem and its elimination		
b.	Implement the following:		
	i) 3-bit parallel data storage using D-flip-flops	9	L4 CO4 PO3
	ii) Frequency division by using JK-flip-flops)	14 004105
	iii) 2-bit counting (0, 1, 2, 3) using T-flip-flops		
c.	Construct the following:		
	i) JK flip-flops using SR-flip-flops	9	L5 CO4 PO3
	ii) D-flip-flops using T- flip-flops		
	UNIT - IV	18	
4 a.	Design and implement a synchronous counter to sequence,	9	L5 CO4 PO3
	$0 \rightarrow 4 \rightarrow 1 \rightarrow 2 \rightarrow 6 \rightarrow 0$ using positive edge triggered T-flip-flops.	1	
b.	Draw the block level schematic diagram of 4-bit SISO and PISO shift register	9	L2 CO4 PO3
	and explain their operation with timing diagram.	,	22 001103
c.	Draw the block diagram of memory and its environment. Describe the read	9	
	and write operation with appropriate information transfer diagram.	2	
	UNIT - V	18	
5 a.	Design a sequence detector using D-flip-flop to detect sequence ending	9	L5 CO3 PO2
	with 101.	-	
b.	A sequential circuit has one input (X) and one output (Z). The circuit		
	examines groups for four consecutive inputs and produces an output $Z = 1$, if	9	L5 CO5 PO1
	the input sequence 0101 or 1001 occurs. The circuit resets after every four		
	inputs. Find the Mealy state graph.		
c.	Design a sequential Mealy circuit which converts an NRZ-coded bit stream to	9	L5 CO5 PO1
	a Manchester-coded bit stream.		