P.E.S. College of Engineering, Mandya - 571 401

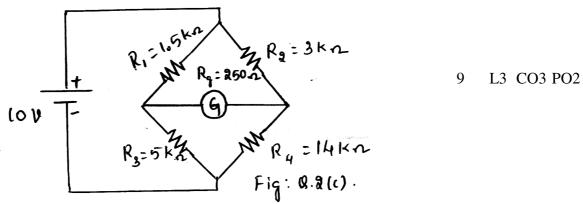
(An Autonomous Institution affiliated to VTU, Belagavi)

Third Semester, B.E. - Electronics and Communication Engineering Semester End Examination; March / April - 2022 Electronic Instrumentation

Time: 3 hrs Max. Marks: 100

Course Outcomes

The Students will be able to:


- CO1: Ability to apply the basic knowledge of Electrical and Electronic principles in Electronic Instrumentation.
- CO2: Ability to analyze the working principle and construction of the electronic measuring instruments.
- CO3: Ability to measure various electrical and physical quantities and related parameters using meters and transducers.
- CO4: Ability to design a system for the desired specifications in Electronic Instrumentation.
- CO5: Ability to understand the working of oscilloscopes, signal generators, wave analysers and harmonic distortion analysers.

Note: I) PART - A is compulsory. Two marks for each question.

II) PART - B: Answer any Two sub questions (from a, b, c) for Maximum of 18 marks from each unit.

Q. No.	(from a, b, c) for Maximum of 18 mark Questions	MarksBLs COs POs	
	I: PART - A	10	
I a.	Define resolution and sensitivity of digital meters.	2	L1 CO1 PO1
b.	List out any one application and limitation of Wheatstone bridge.	2	L1 CO1 PO1
c.	What is Piezo-Electric transducer?	2	L1 CO1 PO1
d.	List any four features of instrumentation amplifier.	2	L1 CO1 PO1
e.	What is the speciality of storage oscilloscope?	2	L1 CO1 PO1
	II : PART - B	90	
	UNIT - I	18	
1 a.	What are systematic errors? Explain different types of it and also describe how these errors can be minimized?	9	L2 CO1 PO1
b.	With the help of a block diagram, explain the working of a ramp type digital voltmeter.	9	L2 CO1 PO1
c.	Sketch the block diagram of True RMS voltmeter and explain the working principle.	9	L2 CO1 PO1
	UNIT - II	18	
2 a.	With the help of neat diagram, derive the balancing condition to determine the unknown frequency in Wein's bridge.	9	L2 CO3 PO2
b.	A capacitance comparison bridge is used to measure capacitance impedance at a frequency of 2 kHz. Bridge constants are C_3 = 100 $\mu F,$ R_1 = 10 k Ω,R_2 = 50 k Ω,R_3 = 100 k $\Omega.$ Find the equivalent series circuit of the unknown impedance.	9	L3 CO3 PO2

c. Calculate the current through the galvanometer for an unbalanced Wheatstone bridge as shown below,

	Fig: Q.a(c).		
	Fig: Q.a(c).		
	UNIT - III	18	
3 a.	Show that, $K = 1 + 2\mu$, for gauge factor.	9	L3 CO2 PO3
b.	Describe the construction and working principle of LVDT and mention	9	L2 CO2 PO2
	its advantages.	9	L2 CO2 FO2
c.	What is Thermistor? With a neat sketch, depict various configurations of	9	L2 CO2 PO2
	Thermistors. Also list out the advantages of Thermistors.		L2 CO2 1 O2
	UNIT - IV	18	
4 a.	Explain the working principle of a spectrum analyser with a neat	9	L2 CO4 PO1
	block diagram.		22 66 1761
b.	Explain Instrumentation amplifier using Transducer bridge with neat	9	L2 CO4 PO1
	circuit diagram and derive the expression for output voltage of the circuit.		L2 CO1101
c.	List out any six objectives of a data acquisition system. Also mention	9	L2 CO4 PO1
	important factors that decide DAS.		L2 CO1101
	UNIT - V	18	
5 a.	Sketch the circuit diagram of function generator and explain its working.	9	L2 CO5 PO1
b.	With the help of block diagram, explain how the frequency synthesizer	9	L2 CO5 PO1
	operates, by showing the waveforms at various points.		
c.	Explain the operation of a Digital storage oscilloscope with a block	9	L2 CO5 PO1
	diagram and sketch the system waveforms.	,	22 233 101