U.S.N

\square

P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belagavi)

Third Semester, B.E. - Electronics and Communication Engineering Semester End Examination; March / April - 2022 Network Analysis and Synthesis

Time: 3 hrs

Course Outcomes

The Students will be able to:
COI: Ability to apply the fundamental concepts in solving and analyzing different Electrical networks.
CO2: Ability to solve circuits using appropriate technique.
CO3: Ability to apply mathematics in analyzing and synthesizing the networks in time and frequency domain.
CO4: Ability to analyze the performance of a particular network.
CO5: Ability to formulate various synthesis methods for different one-port networks.
Note: I) PART - A is compulsory. Two marks for each question.
II) PART - B: Answer any Two sub questions (from a, b, c) for Maximum of $\mathbf{1 8}$ marks from each unit.
Q. No.

Questions
 I : PART - A

I a. State Super-Position theorem.
b. Define Bandwidth and Selectivity of a series RLC circuit.
c. State Initial value theorem.
d. Draw the dual of the network shown.
e. State Hurwitz Polynomial.

II : PART - B

UNIT - I9018

1 a. Find V_{a}, V_{b} and V_{c} using node analysis in the circuit shown in Fig.1.

Fig. 1
b. Using source transformation, find the power delivered by the 50 V source for the circuit shown in Fig. 2

fig. 2
c. Obtain the Thevenin's equivalent network for the network shown in Fig. 3 at terminal A and B.

$9 \quad \mathrm{~L} 3 \mathrm{CO} 3 \mathrm{PO} 3,4$

18
2 a . What is Resonance? Show that resonant frequency of series resonance circuit is equal to the geometric mean of two half power frequencies.
b. For the network shown in Fig. 4, determine;
i) Resonant frequency
ii) Input admittance
iii) Quality Factor
iv) BW
v) Half Power frequencies

$9 \quad \mathrm{~L} 3 \mathrm{CO} 4 \quad \mathrm{PO} 2$

Fig.4.
c. In the network shown in the Fig. 5, the switch is changed from the position 1 to position 2 at $t=0$, steady condition having reached before switching. Find the values of $i, \frac{d i}{d t}, \frac{d^{2} i}{d t^{2}}$ at $t=0+$

3 a. Find the inverse Laplace transform of $F(s)=\frac{s^{2}+3}{\left(s^{2}+2 s+5\right)(s+2)}$.
$9 \quad \mathrm{~L} 3 \mathrm{CO} 3$ PO3,4

9
L3 CO3 PO2,4
b. The network shown in Fig. 6 was in steady state before $t=0$.

The switch is opened at $t>0$. Find $i(t)$ for $t>0$ using Laplace transform.

9 L3 CO4 PO2,4

9 L3 CO3 PO2,4
ii) $f(t)=t e^{-a t} \cos \omega t$
iii) $f(t)=\sinh (\omega t)$
UNIT - IV

4 a . Find the H parameter for the two port network shown in the following Fig. 7.

9 L3 CO5 PO3

Fig. 7
b. Explain the following terms:
i) Duality
ii) Tree
iii) Oriented graph
iv) Branch
v) Link
vi) Rank of graph
c. For the network shown in Fig. 8, write down the F-cutset matrix and obtain the network equilibrium equation on node basis and calculate ' v '.

9 L3 CO5 PO3

Fig. 8

UNIT - V

5 a. Test whether $F(s)=\frac{s^{2}+1}{s^{3}+4 s}$ is positive real function.
b. Realize the foster form-I for the following RC impedance function:

$$
Z(s)=\frac{(s+1)(s+3)}{s(s+2)(s+4)}
$$

9 L3 CO5
PO3
c. Realize the faster form-II for the following LC impedance function:

$$
Z(s)=\frac{(s+1)(s+4)}{(s+5)(s+3)}
$$

9 L3 CO5

