

UNIT - I

1 a. Find V_a , V_b and V_c using node analysis in the circuit shown in Fig.1.

9 L3 CO2 PO2,3

Fig.1

b. Using source transformation, find the power delivered by the 50 V source for the circuit shown in Fig. 2

9 L3 CO2 PO2.3

Contd... 2

P18EC35

c. Obtain the Thevenin's equivalent network for the network shown in

Fig.3 at terminal A and B.

- 2 a. What is Resonance? Show that resonant frequency of series resonance circuit is equal to the geometric mean of two half power9 L1 CO1 PO1,2 frequencies.
 - b. For the network shown in Fig. 4, determine;

i) Resonant frequencyii) Input admittanceiii) Quality Factoriv) BWv) Half Power frequencies

9 L3 CO4 PO2

c. In the network shown in the Fig. 5, the switch is changed from the position 1 to position 2 at t = 0, steady condition having reached

before switching. Find the values of i, $\frac{di}{dt}$, $\frac{d^2i}{dt^2}$ at t = 0 +

9 L3 CO3 PO3,4

UNIT - III

18

3 a. Find the inverse Laplace transform of $F(s) = \frac{s^2 + 3}{(s^2 + 2s + 5)(s + 2)}$. 9 L3 CO3 PO2,4

Page No... 3

P18EC35

b. The network shown in Fig. 6 was in steady state before t = 0. The switch is opened at t > 0. Find i(t) for t > 0 using Laplace transform.

c. Find the Laplace transform of,

i)
$$f(t) = t e^{-at}$$

ii) $f(t) = t e^{-at} \cos \omega t$
iii) $f(t) = sinh(\omega t)$
UNIT - IV
18

4 a. Find the *H* parameter for the two port network shown in the following Fig. 7.

b. Explain the following terms:

i) Duality	ii) Tree	iii) Oriented graph	9	L3	CO5	PO3
iv) Branch	v) Link	vi) Rank of graph				

c. For the network shown in Fig. 8, write down the F-cutset matrix and obtain the network equilibrium equation on node basis and calculate 'v'.

9 L3 CO5 PO3

9

L3 CO5

PO3

P18EC	Pag	Page No 4		
	UNIT - V	18		
5 a.	Test whether $F(s) = \frac{s^2 + 1}{s^3 + 4s}$ is positive real function.	9	L3 CO5	PO3
b.	Realize the foster form-I for the following RC impedance function:			
	$Z(s) = \frac{(s+1)(s+3)}{s(s+2)(s+4)}$	9	L3 CO5	PO3
c.	Realize the faster form-II for the following LC impedance function:			
	$Z(s) = \frac{(s+1)(s+4)}{(s+5)(s+3)}$	9	L3 CO5	PO3

* * *