U.S.N

\square

P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belagavi)

Third Semester, B.E. - Electronics and Communication Engineering Semester End Examination; March/April - 2022 Signals and Systems

Time: 3 hrs
Max. Marks: 100

Course Outcome

The Students will be able to:
CO1: Apply knowledge of basic mathematics to classify different signals and systems
CO2: Analyze signals and systems to determine their properties.
CO3: Analyze LTI/LSI systems in time domain and frequency domain to determine system output and properties
CO4: Analyze CT and DT system and implement using different structures
CO5: Commenting on existing demo, group activity based learning new tools and solving problems using tools
Note: I) PART - A is compulsory. Two marks for each question.
II) PART-B: Answer any Two sub questions (from a, b, c) for Maximum of $\mathbf{1 8} \mathbf{~ m a r k s}$ from each unit.
Q. No.

Questions

Marks BLs COs POs
I : PART - A
I a. Determine whether the following signals are periodic. Find the periodic, if they are periodic;
i) $x(t)=v(t)+v(-t) \quad$ where $v(t)=\sin (t) \cdot u(t)$
ii) $\cos (1 / 5 \pi n) \cdot \sin (1 / 3 \pi n)$
b. Check whether the following continuous time systems are time invariant or time variant:
i) $y(t)=\sin x(t)$
ii) $y(t)=t \cdot x(t)$
c. Compute the Fourier transform of the signal,

$$
x(t)=e^{-2 t} u(t)
$$

d. Define frequency shift property with respect to DTFT.

L1 CO 3 PO 1
e. Determine the Z-transform of the following:
i) $\delta(u)$
ii) $u(n)$

II : PART - B

90UNIT - I18

1 a. Determine whether the following signals are energy signals or power signals and calculate their energy or power:
i) $x(n)=\left(\frac{1}{2}\right)^{n} u(n)$

L3 CO2 PO1
ii) $x(t)=\cos ^{2}\left(w_{0} t\right)$
iii) $x(n)=u(n)$
b. For each of the systems, determine whether the system is linear or non linear, causal or non causal, stable or unstable.
i) $y(n)=\cos [x(n)]$
ii) $y(n)=x(n) \cdot u(n)$
iii) $y(n)=\operatorname{Sgn}[x(n)]$
c. Find and sketch the Even and Odd components of the following:
i) $x(t)=e^{j t}$
ii) $x(t)= \begin{cases}t ; & 0 \leq t \leq 1 \\ 2 t ; & 1 \leq t \leq 2\end{cases}$
iii) $x(t)=\cos ^{2}\left(\frac{\pi t}{2}\right)$

L2 CO1 PO1

2 a . Obtain $x(t)^{*} y(t)$ for the signals,
$x(t)=u(t)-u(t-2), y(t)=t[u(t)-u(t-1)]$. Sketch the convolved signal $x(t) * y(t)$.
b. Determine the complete response of the system;
$\frac{d^{2} y(t)}{d t^{2}}+5 \frac{d y(t)}{d t}+4 \quad y(t)=\frac{d x(t)}{d t}$
With $y(0)=0, \left.\frac{d x(t)}{d t} \right\rvert\,=1$ and $x(t)=e^{-2 t} \cdot u(t)$
c. Draw the direct form-I and form-II realizations for the following systems:
i) $y(u)-1 / 2 y(n-1)+1 / 4 y(n-2)=x(n)+2 \cdot x(n-1)$
ii) $\frac{2 \cdot d^{3} y(t)}{d t^{3}}+\frac{d y(t)}{d t^{2}}+3 y(t)=x(t)$

UNIT - III

3 a . State and prove the following properties of FS:
i) Linearity
ii) Convolution in time
iii) Modulation theorem
b. Find the exponential Fourier series and plot the magnitude and phase spectrum for the saw tooth wave form of Fig.Q3(b)

c. Obtain the Fourier transforms of the following signals:
i) $x(t)=e^{a t} u(-t)$
ii) $x(t)=e^{-a|t|}$
iii) $x(t)=e^{-a t \mid} \sin (t)$

9
L3
3 CO3 PO2

18

UNIT - IV

4 a. State and prove the following properties of DTFT:
i) Time shift
ii) Parseval's theorem
iii) Duality
b. Determine the Nyquist rate for the following signals:
i) $x(t)=\operatorname{sinc}(200 t)+\operatorname{sinc}^{2}(200 t)$
ii) $x(t)=\cos (10 \Pi t)+3 \cos (20 \Pi t)$
iii) $x(t)=1+\cos (200 \Pi t)+\sin (400 \Pi t)$
c. Obtain the DTFS of the following DT a periodic sequences:

$$
\begin{aligned}
& \text { i) } x(n)=\delta(u)-3 \delta(u-3)+2 \delta(u-4) \\
& \text { ii) } x(n)=(1 / 2)^{n} u(n)-(1 / 3)^{n} u(-u-3) \\
& \text { iii) } x(n)=(1 / 2)^{n} u(n-4)
\end{aligned}
$$

UNIT - V

5 a. Determine the ZT of following sequences:
i) $(0.2) n\langle u(n)-u(n-4)\rangle$
ii) $\alpha^{|n|}, 0<|\alpha|<1$
iii) $n^{2} u(n)$

9
L3 CO 3 PO 2

L2 CO3 PO1

9
L2 CO3 PO1
ii) Initial value theorem
iii) Multiplication by a Ramp
c. Determine the inverse Z-transform of
$x(Z)=\frac{1}{1-1.5 Z^{-1}+0.5 Z^{-2}}$ for
i) $\operatorname{RoC}|Z|>1$
ii) $\operatorname{RoC}|Z|<0.5$
iii) $\operatorname{RoC}<|Z|<1$

