110110		د 		1.0				
•								
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) Fifth Semester, B.E Electronics and Communication Engineering Semester End Examination; February / March - 2022 Digital CMOS VLSI Design								
Time:	8	Max	. Mar	ks: 10)0			
The St	Course Outcomes							
 The Students will be able to: CO1: To Apply the basic knowledge of Physics and mathematics to understand the MOS and derive different current equations of MOS circuits and delays of CMOS inverter circuits. CO2: To Analyze the CMOS inverter circuit and BiCMOS circuits. CO3: To Design combinational, sequential and Dynamic circuits based on CMOS inverters for the given specifications. 								
CO4: To Discuss various issues related to clocking, I/O and protection in MOS and VLSI Fabrication Process.								
 CO5: Work in groups to model transistors and its circuits learning new tools. <u>Note</u>: I) PART - A is compulsory. Two marks for each question. II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for Maximum of 18 marks from each unit. 								
Q. No.	Questions I : PART - A	Marks 10	BLs	COs	POs			
I a.	Define scaling.	2	L3	CO1	PO1			
b.	Define noise margin and mention the types of noise margins in MOSFET.	2	L3	CO1	PO1			
c.	Write CMOS circuit for NAND-3 gate.	2	L4	CO2	PO2			
d.	Write the types of high performance dynamic CMOS logic circuit.	2	L3	CO1	PO1			
e.	Write BiCMOS inverter circuit with resistive base pull-down.	2	L4	CO2	PO2			
	II : PART - B	90						
1 a.	UNIT - I With the help of flow chart, explain the VLSI design flow in detail, also	18						
	write drain current equation in linear and saturation region of NMOS transistor.	9	L3	CO1	PO1			
b.	Explain constant field scaling techniques and its effect on device							
	performance. Also calculate the drain current and power dissipation after scaling.	9	L3	CO1	PO1			
c.	Derive an equation for the threshold voltage reduction ΔV_{To} due to short channel effects in MOSFET.	9	L4	CO2	PO2			
2 a.	UNIT - II Consider a simple abrupt PN-junction, which is reverse biased with a voltage V _{bias} . The doping density of the <i>n</i> -type region is $N_D = 10^{19}$ cm ⁻³	18						
	and the doping density of the <i>p</i> -type region is $N_{A} = 10^{16}$ cm ⁻³ . The junction area is A = 20 µm x 20 µm. Find the average junction capacitance. If the applied voltage changes from 0 V to -5 V.	9	L4	CO3	PO3			

Page No... 1

P18EC52		Page No 2		
b.	Discuss the operation of CMOS inverter along with circuit diagram and VTC curve. Also, write operating regions of nMOS and pMOS transistor.	9	L3 CO2 PO2	
c.	Discuss the RC delay model and Elmore's delay model for the calculation of interconnects delay.	9	L3 CO2 PO2	
	UNIT - III	18		
3 a.	Derive an equation for threshold voltage of two input CMOS NOR gate. Also write the condition for CMOS NOR ₂ threshold voltage = $\frac{V_{DD}}{2}$.	9	L3 CO1 PO1	
b.	Design CMOS logic circuit for the function, $Z = \overline{A(D+E) + BC}$ and draw stick layout diagram using Euler's path.	9	L5 CO3 PO3	
с.	With neat diagram, explain the operation of Bistable elements.	9	L3 CO3 PO3	
	UNIT - IV	18		
4 a.	With neat diagram, explain the basic principles of pass transistor circuit.	9	L3 CO3 PO3	
b.	Briefly explain the domino CMOS logic gate.	9	L5 CO3 PO2	
с.	Explain the concept of voltage Bootstrapping.	9	L4 CO4 PO2	
	UNIT - V	18		
5 a.	With neat diagram, explain the fabrication steps involved in the NMOS transistor on <i>P</i> -type silicon.	9	L3 CO4 PO1	
b.	Briefly explain BiCMOS inverter circuit with resistive base pull down.	9	L3 CO4 PO2	
c.	With neat diagram, explain the ESD protection network with example.	9	L3 CO4 PO1	

* * * *