5	U.S.N								
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) Fifth Semester, B.E Electronics and Communications Engineering Semester End Examination; February / March - 2022									
m :	Information Theory Coding and Cryptogra				1.07				
Time: 3			Мах	. Mark	s: 100				
CO1: A CO2: A CO3: D CO4: L	Course Outcomes dents will be able to: pply knowledge of mathematics to understand concepts of Probability, Infor channel, source codes and cryptography nalyze different source codes for its efficiency used with communication cha besign coding schemes for a given specifications and evaluate for their error Discuss different lossy / lossless data compression schemes and analyze reconstruction of transmitted data Discuss various cryptography algorithms for secured communication	nnels · correctir	ıg capa	bility					
/	PART - A is compulsory. Two marks for each question.								
	II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for Maximum of 18 marks from each unit.								
Q. No.	Questions I : PART - A	Marks 10	BLs	COs	POs				
I a.	Define Conditional entropy and Joint entropy.	2	L1	CO1	PO1				
b.	Write the mathematical equation for channel capacity theorem.	2	L2	CO1	PO2				
с.	Mention any two applications of Reed-Solomon code.	2	L2	CO3	PO1				
d.	Explain the concept of Biometric encryption.	2	L2	CO1	PO1				
e.	Define stream cipher and block cipher.	2	L2	CO5	PO2				
	II : PART - B	90							
1 a.	UNIT - I The symbol with the probabilities $p(x) = \{0.3, 0.25, 0.2, 0.12, 0.08, 0.05\}$. Construct the Huffman tree by placing as low as possible.	18 9	L3	CO2	PO2				
b.	Consider the source alphabet with $P(A) = 0.5$, $P(B) = 0.25$, $P(C) = 0.15$, $P(O) = 0.10$. Construct the arithmetic code for the input symbol sequence <i>ABCD</i> .	9	L4	CO2	PO2				
c.	Explain JPEG standard for lossy compression with suitable example.	9	L3	CO4	PO2				
2	UNIT - II	18		964	DCC				
2 a.	Discuss the channel capacity for MIMO system.	9	L3	CO2	PO2				
b.	Consider a (6, 3) linear block code whose generator matrix is $G = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$ Find all the code vectors, parity check matrix. Hamming weights	9	L3	CO2	PO2				

Find all the code vectors, parity check matrix. Hamming weights and distances

Page No... 1

P18EC53			Page No 2		
c.	Parity matrix for a(3, 2) linear block code is given below,				
	$\mathbf{P} = \begin{bmatrix} 1\\ 0 \end{bmatrix}$	9	L3	CO3	DUJ
	i) Find the generator matrix for the code	7	LJ	005	102
	ii) Find the code vectors				
	iii) Construct the standard array				
	UNIT - III	18			
3 a.	Let the polynomial $g(x) = 1+x+x^3$ be the generator polynomial for				
	a systematic(7, 4) cyclic code;				
	i) Find the generator matrix G	9	L3	CO3	PO3
	ii) Find the parity check matrix H	,	13	005	105
	iii) Systematic cyclic code-vectors for given message vector,				
	I) 0110 II)1001				
b.	Discuss the steps for determining the generator polynomials for	9	L3	CO3	PO2
	<i>t</i> -error correcting BCH codes with suitable example.	-	20		
c.	Explain the following:				
	i) Reed-Solomon code	9	L2	CO2	PO2
	ii) Golay codes				
1.0	UNIT - IV	18			
4 a.	Define the following: i) Plain text				
	ii) Cipher text	9	L2	CO5	PO^{2}
	iii) Key)	L	COJ	102
	iv) DES				
b.	Explain IDEA and discuss security provided by IDEA.	9	L3	CO5	PO2
с.	Discuss cryptanalytic and politics of cryptography.	9	L3	CO5	
	UNIT - V	18			
5 a.	Discuss with a neat diagram AES Encryption and Decryption.	9	L2	CO5	PO2
b.	Explain DES algorithm and the strength of DES.	9	L2	CO5	PO2
с.	Write a short notes on;				
	i) Finite field arithmetic	9	L2	CO5	PO2
	ii) Substitute byte transformations				

* * * *