U.S.N

\square

P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belagavi)

Fifth Semester, B.E. - Electronics and Communications Engineering Semester End Examination; February / March - 2022 Information Theory Coding and Cryptography

Time: 3 hrs

Course Outcomes

The Students will be able to:
CO1: Apply knowledge of mathematics to understand concepts of Probability, Information theory, communication channel, source codes and cryptography
CO2: Analyze different source codes for its efficiency used with communication channels
CO3: Design coding schemes for a given specifications and evaluate for their error correcting capability
CO4: Discuss different lossy / lossless data compression schemes and analyze various decoding schemes for reconstruction of transmitted data
CO5: Discuss various cryptography algorithms for secured communication
Note: I) PART - A is compulsory. Two marks for each question.
II) PART - B: Answer any Two sub questions (from a, b, c) for Maximum of 18 marks from each unit.
Q. No.

Questions

I : PART - A
I a. Define Conditional entropy and Joint entropy.
b. Write the mathematical equation for channel capacity theorem.
c. Mention any two applications of Reed-Solomon code.
d. Explain the concept of Biometric encryption.
e. Define stream cipher and block cipher.

Marks BLs COs POs
10
2 L1 CO1 PO1

2 L2 CO1 PO2
2 L2 CO3 PO1
2 L2 CO1 PO1
2 L2 CO5 PO2

UNIT - I 18
1 a . The symbol with the probabilities $p(x)=\{0.3,0.25,0.2,0.12,0.08$, $0.05\}$. Construct the Huffman tree by placing as low as possible.
b. Consider the source alphabet with $P(A)=0.5, P(B)=0.25$, $P(C)=0.15, P(O)=0.10$. Construct the arithmetic code for the input symbol sequence $A B C D$.
c. Explain JPEG standard for lossy compression with suitable example.

UNIT - II

2 a. Discuss the channel capacity for MIMO system.
L3 CO2 PO2
b. Consider a $(6,3)$ linear block code whose generator matrix is

$$
G=\left[\begin{array}{llllll}
1 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 1
\end{array}\right]
$$

Find all the code vectors, parity check matrix. Hamming weights and distances
c. Parity matrix for $a(3,2)$ linear block code is given below,

$$
P=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

i) Find the generator matrix for the code
ii) Find the code vectors
iii) Construct the standard array

UNIT - III

3 a. Let the polynomial $g(x)=1+x+x^{3}$ be the generator polynomial for a systematic $(7,4)$ cyclic code;
i) Find the generator matrix G
ii) Find the parity check matrix H
iii) Systematic cyclic code-vectors for given message vector,
I) 0110
II)1001
b. Discuss the steps for determining the generator polynomials for t-error correcting BCH codes with suitable example.
c. Explain the following:
i) Reed-Solomon code
$9 \quad \mathrm{~L} 3 \quad \mathrm{CO} 3 \mathrm{PO} 2$
ii) Golay codes

UNIT - IV

4 a. Define the following:
i) Plain text
ii) Cipher text

9 L2 CO5 PO2
iii) Key
iv) DES
b. Explain IDEA and discuss security provided by IDEA.
c. Discuss cryptanalytic and politics of cryptography.

UNIT - V

5 a. Discuss with a neat diagram AES Encryption and Decryption.
$9 \quad \mathrm{~L} 3 \quad \mathrm{CO} 5 \mathrm{PO} 2$
b. Explain DES algorithm and the strength of DES.
9 L3 CO5 PO2
c. Write a short notes on;
i) Finite field arithmetic
9 L2 CO5
PO2
ii) Substitute byte transformations

