	U.S.N							
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) Fifth Semester, B.E Electronics and Communication Engineering Semester End Examination; February / March - 2022 Optical Communication Systems and Networks								
Time: 3 hrs Max. Marks: 100								
Course Outcomes The Students will be able to: CO1: Apply the knowledge of physics to explain basic optical laws, various optoelectronic devices and its structures. CO2: Analyze the causes for different losses in an optical communication link. CO3: Develop a solution for optical communication systems for specified characteristics. CO4: Examine the methods to improve coupling efficiency and signal to noise ratio of the communication system. Co5: To Enrich the knowledge about optical communication systems and networks.								
Note: I) PART - A is compulsory. Two marks for each question.								
) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for Maximum of 18 mark	s from ea	ich uni	it.				
Q. No.	Questions I : PART - A	Marks 10	BLs	COs	POs			
I a.	A silica optical fiber with a core diameter large enough to be considered							
	by ray theory analysis has a core refractive index of 1.5 and a cladding							
	refractive index of 1.47. Determine;	2	L1	CO1	PO1			
	i) Critical angle at core cladding interface							
	ii) Numerical apertures for the fiber							
b.	A photodiode is constructed of GaAs. Which has a band gap energy of	2	т 1	CO 2				
	1.43 eV at 300 K. Determine the long wave length cutoff.	2	L1	CO2	PO2			
с.	Define optical circulators and mention any two applications.	2	L1	CO1	PO1			
d.	Define; i) Stimulated emission ii) Spontaneous emission.	2	L1	CO1	PO1			
e.	Mention the features of reconfigurable OADM.	2	L1	CO5	PO2			
	II : PART - B	90						
1.	UNIT - I	18	т 2	CO^{2}				
1 a.	Derive an expression for maximum acceptance angle of an optical fiber.	9	L3	CO3	PO3			
b.	With a neat diagram, describe the bending losses that occur in optical fibers.	9	L2	CO2	PO2			
c.	Explain the working of Fabry Perot resonator cavity for laser diode with	9	L2	CO2	PO1			
	relevant diagram.	10						
2		18						
2 a.	Illustrate the representation of a PIN photodiode circuit with an applied reverse bias also explain the energy band diagram for PIN photodiode.	9	L2	CO1	PO1			
b.	Describe the types of fiber splicing techniques with relevant figures.	9	L2	CO1	PO1			
c.	With a neat diagram, explain optical power loss model for a point to	9	L2	CO2	PO2			
	point link. Contd 2							

Page No... 1

P18EC54			Page No 2	
	UNIT - III	18		
3 a.	Describe the configuration of an eye diagram showing key performance parameters with the relevant diagram.	9	L2 CO4 PO1	
b.	Discuss the following with neat diagram:			
	i) Multichannel amplitude modulation	9	L2 CO1 PO1	
	ii) Subcarrier multiplexing			
c.	With a neat diagram, explain the working principle of Mach-Zender interferometer multiplexer.	9	L2 CO1 PO1	
	UNIT - IV	18		
4 a.	Describe an IP over SONET network with the layered view of an IP over ATM over SONET network.	9	L3 CO5 PO2	
b.	Explain circuit switched and packet switched network with relevant multiplexing types.	9	L3 CO5 PO2	
c.	Describe the distributed Raman amplifier using a backward propagating pump.	9	L2 CO1 PO1	
	UNIT - V	18		
5 a.	Explain two types of frame structures used in SONET.	9	L2 CO5 PO2	
b.	With a neat diagram, explain different types of OADM architecture.	9	L2 CO5 PO2	
c.	Briefly discuss the network management functions by showing overview of network management in optical network.	9	L3 CO5 PO2	

* * * *