U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

Seventh Semester, B.E. - Electronics and Communication Engineering Semester End Examination; February - 2022 Fundamentals of Wireless Communication

Time: 3 hrs Max. Marks: 100

Course Outcomes

The Students will be able to:

- CO1: Apply signal processing for wireless communication system to understand basic principles of wireless communication.
- CO2: Analyze various standards and methodologies to improve the cellular capacity.
- CO3: Apply communication system to interpret multiple access techniques and capacity in cellular system.
- CO4: Apply fundamentals of cellular communication system to understand handoff, roaming strategies and various wireless systems, standards and mobile radio propagation.
- CO5: Design and analyze a cellular system for various parameters like capacity, interference, handoff, radio propagation etc.

Note: I) PART - A is compulsory. Two marks for each question.

II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for Maximum of 18 marks from each unit.

Q. No.	(PARI - B: Answer any <u>Iwo</u> sub questions (from a, b, c) for Maximum of 18 ma Questions		BLs COs POs
•	I : PART - A	10	
I a.	Name the different types of mobile radio transmission systems.	2	L1 CO1 PO1
b.	What do you mean by guard channel concept and mention its disadvantage.	2	L1 CO2 PO1
c.	Write the constellation diagram of M-ray QAM signals.	2	L2 CO3 PO1
d.	If a US AMPS cellular operator is allocated 12.5 MHz for each simplex		
	band and if B _t is 12.5 MHz, Bguard is 10 kHz and B _c is 30 kHz. Find	2	L2 CO4 PO1
	the number of channels available in an FDMA system.		
e.	Find the far field distance for an antenna with maximum dimension of	2	L2 CO5 PO1
	1.5 m and operating frequency 1000 MHz.	2	L2 CO3 FO1
	II : PART - B	90	
1 a.	UNIT - I Explain the block diagram of cellular systems and discuss the	18	
ı a.	difference between wireless and fixed telephone networks.	9	L2 CO1 PO1
b.	Explain the concept of Bluetooth and Personal Area Networks (PAN).	9	L2 CO1 PO1
		9	L2 COLTOI
c.	Explain the wireless local area network IEEE 802.11 wireless LAN	9	L2 CO1 PO1
	standard.		
2 -	UNIT - II	18	
2 a.	Explain the frequency reuse concept and discuss the method of locating	9	L4 CO5 PO2
	cochannel cells in a cellular system.		
b.	Explain the handoff strategies and also discuss improper and proper	9	L3 CO5 PO2
	handoff situations.		
c.	Explain the concept of cell splitting and cell sectoring with suitable	9	L3 CO5 PO2
	diagram.		

P18EC72			Page No 2
	UNIT - III	18	
3 a.	Explain GSM system architecture with block diagram.	9	L3 CO2 PO2
b.	Explain the MPSK modulation with related equations and constellation diagram for 8-PSK.	9	L3 CO2 PO2
c.	Describe the working of direct sequence spread spectrum systems.	9	L2 CO2 PO2
C.	UNIT - IV	18	22 002 102
4 a.	Explain the TDMA hyper frame structure with diagram in detail.	9	L2 CO3 PO1
b.	Explain the features of FDMA and nonlinear effects in FDMA.	9	L2 CO3 PO1
c.	Explain the packet radio access techniques and its protocols with		
	suitable diagram.	9	L2 CO3 PO1
	UNIT - V	18	
5 a.	Assume a receiver is located 10 km from a 50 W transmitter.		
	The carrier frequency is 900 MHz, free space propagation is assumed	0	
	$G_t = 1$ and $G_r = 2$. Find;		
	i) The power at the receiver		L2 CO4 DO2
	ii) The magnitude of the E field at the receiver antenna	9	L3 CO4 PO2
	iii) The rms voltage applied to the receiver input assuming that the		
	receiver antenna has a purely real impedance of 50 Ω and is		
	matched to the receiver.		
b.	A mobile is located 5 km away from the station and uses vertical $\lambda/4$		
	monopole antenna with a gain of 2.55 dB to receive cellular radio		
	signals. The E field at 1 km from the transmitter is measured to be		
	10^{-3} V/m. The carrier frequency used for this system is 900 MHz.	9	L4 CO4 PO2
	i) Find the length and the effective aperture of the receiving antenna.	,	L4 CO4 102
	ii) Find the received power at the mobile using the two ray ground		
	reflection model assuming the height of the transmitting antenna is		
	50 m and the receiving antenna is 1.5 m above ground.		
c.	Explain the types of fading and fading effect due to multipath time	9	L2 CO4 PO1
	delay spread and Doppler spread in brief.		12 004 101