U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

Fifth Semester, B.E. - Electronics and Communication Engineering Semester End Examination; February / March - 2022 DSP Processor and Application

Time: 3 hrs Max. Marks: 100

Course Outcomes

The Students will be able to:

CO1: Distinguish between the DSP Processor and general purpose processor.

CO2: Analyze the architecture features of Digital signal processor using basic digital circuit knowledge.

CO3: Develop programs for digital filters using DSP processor for various situations and demonstrate utility of DSP processor in various signal processing applications.

CO4: Apply the logical and signal processing concepts to develop algorithms for DSP processor.

CO5: Design the interface to connect specified memory and signal converters.

Note: I) **PART - A** is compulsory. **Two** marks for each question.

II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for Maximum of 18 marks from each unit.

Q. No.	Questions I : PART - A	Marks 10	BLs	COs	POs
I a.	Draw and explain decimation process.	2	L2	CO3	PO4
b.	Identify the addressing modes of the operands in each of the following				
	instruction and their operation:	2	L3	CO4	PO1
	i) ADD B ii) ADD #1234 H				
c.	Draw the block diagram of DSP system with interfacing.	2	L2	CO2	PO2
d.	Determine the content of the TMS320C54XX addressing mode,				
	assuming AR4 to be 200h and content of AR0 as 20h.	2	L3	CO4	PO1
	i) $*AR4 + 0$ ii) $*AR4 - 0$				
e.	Determine the following for a 256 point FFT computation:	2	1.2	CO2	DO4
	i) Number of stages ii) Number of butterflies in each stage	2	L3	CO3	PO4
	II : PART - B	90			
	UNIT - I	18			
1 a.	Explain the following addressing modes:				
	i) Circular addressing mode	9	L2	CO1	PO1
	ii) Indirect addressing mode	9	L2	CO1	PO1
b.					
b.	ii) Indirect addressing mode	9	L2 L2	CO1	
b. c.	ii) Indirect addressing mode Design a 4×4 Braun multiplier. Explain in detail with relevant equations	9	L2	CO1	PO1
	ii) Indirect addressing mode Design a 4×4 Braun multiplier. Explain in detail with relevant equations and comment on bus width.				PO1
c.	ii) Indirect addressing mode Design a 4×4 Braun multiplier. Explain in detail with relevant equations and comment on bus width. Explain MAC unit with a neat block diagram, discuss in detail, the methods to avoid overflow / underflow conditions. UNIT - II	9	L2	CO1	PO1
	ii) Indirect addressing mode Design a 4×4 Braun multiplier. Explain in detail with relevant equations and comment on bus width. Explain MAC unit with a neat block diagram, discuss in detail, the methods to avoid overflow / underflow conditions. UNIT - II With a neat block diagram, explain Barrel shifter of TMS320C54XX	9	L2	CO1	PO1
c.	ii) Indirect addressing mode Design a 4×4 Braun multiplier. Explain in detail with relevant equations and comment on bus width. Explain MAC unit with a neat block diagram, discuss in detail, the methods to avoid overflow / underflow conditions. UNIT - II	9 9 18	L2 L2	CO1	PO1

P18EC552			Page	No 2
b.	Explain the 6-stage pipeline of TMS320C54XX processor execution.	9	L3	CO2 PO2
c.	Describe the operation of the following instructions:			
	i) MPY *AR2-, *AR4+0, B	0	1.2	CO4 PO1
	ii) MAS *AR3-, *AR4+B, A	9	L3	CO4 PO1
	iii) RPT #2			
	UNIT - III	18		
3 a.	Write a TMS320C54XX program that illustrates the implementation of	9	L3	CO4 PO1
	an FIR filter.			
b.	Determine the value of each of the following 16-bit numbers represented			
	using the given 2 notation:			
	i) 4400h as Q ₀	9	L3	CO ₄ PO ₁
	ii) 0.3125 as Q ₁₅			
	iii) FEA0h as Q ₇			
c.	Derive an optimum scaling factor for DIT-FFT butterfly and explain the	9	L3	CO4 PO1
	butterfly computation in DIT-FFT.			
4	UNIT - IV	18		
4 a.	Design a circuit to interface an 8k × 16 program ROM to TMS320C5416	9	L5	CO5 PO3
	DSP in the address range 7FE000h - 7FFFFFh.			
b.	Differentiate between normal and DMA data transfer. List the different			
	parameters to be initialize in DMA operation and explain register sub	9	L3	CO4 PO1
	addressing technique of configuring DMA.			
c.	Explain in brief, how interrupt handling is done in TMS320C54XX	9	L3	CO4 PO1
	device with a flow chart?			
5.0	UNIT - V Draw and avalain IDEC anader and decoder	18 9	Ι.4	CO2 DO4
5 a.	Draw and explain a DSP based biotelemetry receiver implementation		L4	CO3 PO4
b.	Draw and explain a DSP based biotelemetry receiver implementation.	9	L4	CO3 PO4
c.	Draw and explain TMS320C6713 architecture.	9	L2	CO2 PO2