

Max. Marks: 100

Course Outcomes

The Students will be able to: CO1: Analyze single phase and three phase AC circuits.

CO2: Demonstrate their understanding about earthing and different types of earthing.

CO3: Demonstrate their understanding about different types of measuring instruments and their usage.

CO4: Identify and analyze the parts of DC machines, Transformers, Alternators and Induction machines.

CO5: To get an overview of special electrical machines.

Note: I) PART - A is compulsory. Two marks for each question.

II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for a Maximum of 18 marks from each unit.

Q. No.	Questions I : PART - A	Marks 10	BLs	COs	POs
I a.	What is the difference between apparent power and real power in an AC circuit?	2	L1	CO1	PO1
b.	Justify the necessity of three phase system over single phase system.	2	L6	CO2	PO1
c.	Name the material of the brushes in DC machines. Why do you use this material?	2	L1	CO3	PO1
d.	How do the iron losses vary with the load on the transformer?	2	L2	CO4	PO1
e.	Write any two applications of Brush less DC motor.	2	L1	CO5	PO1
	II : PART - B	90			
1.	UNIT - I	18			
1 a.	Show that the power consumed in a pure capacitor circuit is zero. Draw the relevant circuit diagram, Phasor diagram, waveforms.	9	L5	CO1	PO2
b.	An inductive coil is connected in series with a resistance of 50 ohms				
	across a 230 V, 50 Hz AC supply. The voltage across the coil is 180 V				PO1
	and across the resistance is 130 V. Calculate;	0	1.2	001	
	i) Resistance and inductance of coil	9	L3	COI	
	ii) Power dissipated in coil				
	iii) Also draw the vector diagram				
c.	An alternating voltage of $(160 + j120)$ V is applied to a circuit and the				
	current in the circuit is given by $(6 + j8)$ A. Find;				
	i) The values of the elements of the circuit	9	12	CO1	PO3
	ii) The power factor of the circuit		L3		
	iii) The power consumed				
	iv) Draw the vector diagram				

P18E	P18EE15		Page No 2		
	UNIT - II	18			
2 a.	A balanced Star-connected load of (8 + j6) ohms per phase is				
	connected to a 3-phase, 230 V supply. Find the line current, power	9	L3	CO2	PO3
	factor, power, reactive volt ampere and total volt-amperes.				
b.	What is meant by earthing of electrical appliances? Explain	9	L1	CO2	PO1
	pipe earthing.	,	LI	002	101
c.	Explain the construction and working of a single phase induction type	9	L2	CO2	PO1
	energy meter.	,		002	101
	UNIT - III	18			
3 a.	Explain the working principle of a DC generator and a DC motor.	9	L3	CO3	PO2
	Mention the different types of DC motors and their applications.				
b.	A 6 pole lap wound, 220 V shunt exited DC machine takes an				
	armature current of 2.5 Ampere on no load and runs at 950 rpm. On				
	load, it takes an armature current of 54 ampere and also runs 950 rpm.				
	The armature resistance is 0.18 Ω and it has 1044 armature	9	L6	CO3	PO2
	conductors. Calculate on load:	-			
	i) Induced emf				
	ii) Useful flux				
	iii) Total torque developed by the machine				
c.	Explain the constructional features of synchronous generator with	9	L4	CO3	PO1
	relevant diagrams.	,	E.	005	101
	UNIT - IV	18			
4 a.	Draw the construction of core and shell type transformers and give a	9	L5	CO4	PO1
	detailed comparison between them.				
b.	A 600 kVA single phase transformer has an efficiency of 92% both at	0	T	004	DOA
	full load and half-load at unity power factor. Determine its efficiency	9	L6	CO4	PO2
	at 75% of full load at 0.9 power factor lag.				
c.	With vector diagrams prove that a rotating magnetic field of constant	0		a a 4	200
	magnitude is produced in the stator of an induction motor when	9	L5	CO4	PO3
	connected to a balanced three-phase supply.	10			
5 a.	UNIT - V With circuit arrangement, explain the capacitor start and capacitor run	18			
5 a.	single phase induction motor.	9	L1	CO5	PO2
b.	Give a comparison between servo motor and stepper motor.				
0.	Also mention their applications.	9	L2	CO5	PO2
c.	Describe the operating principle and construction of a brushless				
	DC motors.	9	L4	CO5	PO1