	U.S.N	
	P.E.S. College of Engineering, Mandya - 571 401	
R.	(An Autonomous Institution affiliated to VTU, Belagavi) Third Semester, B.E Electrical and Electronics Engineering	
	Semester End Examination; March / April - 2022	
	Electrical Circuit Analysis	
Time: 、		s: 100
The Stu	<i>Course Outcomes</i> dents will be able to:	
CO2: T	o solve problems on electrical network using different techniques and theorems, resonance concepts. To obtain graphical solution to electrical networks using Network Topology.	
	nalyze the network under transient condition due to switching. nalyze and obtain the time domain response of R, L, C circuits for all types of excitations using 1	anlace
tı	cansforms.	-
	epresent the two port networks by Z, Y, ABCD and Parameters and Assessment of stability of netwo etwork function.	rk from
Note: 1	PART - A is compulsory. Two marks for each question.	
	<i>PART - B:</i> Answer any <u>Two</u> sub questions (from a, b, c) for Maximum of 18 marks from each unit. Questions	Marks
). No.	I : PART - A	10 10
I a.	Write the circuit symbols for four dependent sources.	2
b.	Mention any two dirichlet conditions of Fourier series.	2
c.	Obtain the Laplace transform of a Gate function.	2
d.	Three similar resistors are connected in star across 450 V, 3 phase lines. The line current	
	is 10 A. If the same resistors are connected in delta across the same supply, calculate the	2
	power consumed.	
e.	List any four properties of driving point admittance of LC network.	2
	II : PART - B	90
1 a.	UNIT - I Find an equivalent resistance between A and B for the network shown below,	18
	15n von	
	A a mus mus	
	\$ ~~~ \$35m	9
	yen 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
	Bo	
	yon	
b.	Solve for the current I in the circuit shown in Fig. Q1(b) using node analysis.	
	510 A	
	22 11 51-2 14	
	VI JOSSO V2	9

JI.

J2

Fig. 9 1(b)

201-90

\$2I \$4-A

Page No... 1

P18EE32

c. Find the Thevenins equivalent circuit at the terminals AB for the network shown in Fig.Q1(c) and hence determine the current in the resistance of 1 Ω connected between AB.

UNIT - II

18 9

- 2 a. List the properties of series resonance and give the applications of the same.
 - b. Find the trigonometric Fourier series for the waveform shown in Fig. Q2(b).

c. A voltage v = 50 + 25 sin500t + 10 sin1500t + 5 sin2500t volts applied to the terminals of a passive network and the resulting current is,
i = 5 + 2.23 sin(500t - 26.6°) + 0.556 sin (1500t - 56.3°) + 0.186sin (2500t - 68.2°) A.
Find the effective voltage, effective current and the average power.

3 a. In the given network of Fig. Q3(a), the switch 'K' is opened at t = 0. At t = 0+ solve for

the values of v, $\frac{dv}{dt}$ and $\frac{d^2v}{dt^2}$ if I = 2 A, $R = 200 \Omega$ and L = 1 H.

9

9

18

9

P18EE32

b. In the circuit shown in Fig. Q3(b), steady state is reached with switch 'K' open. The

switch is closed at t = 0. Determine i_1 , i_2 , $\frac{di_1}{dt}$ and $\frac{di_2}{dt}$ at t = 0+.

c. For the waveform shown below, show that the Laplace transform is given by

- 4 a. A three phase, three wire, 100 volts, ABC system supplies a balanced delta connected load with impedances of $20|45^{\circ}$ ohms. Determine the line current and draw the 9 phasor diagram.
 - b. (i) Obtain Z-parameters in terms of y-parameters.
 - (ii) Find Z-parameters for the network shown in Fig. 4b.

5

4

P18EE32

c. Find the 'h' parameters of the network shown in Fig. Q4(c).

5 a. Find the transform impedance of the network shown in Fig. Q5(a).

b. Explain significance of poles and zeroes and draw pole-zero plot for,

$$V(S) = \frac{(S+1)(S+3)}{(S+2)(S+4)}$$
9

c. In the network shown in Fig. Q5(c), the switch 'K' is closed at t = 0. Find an expression for the current i(t) using Laplace transform method.

9

9

* * *