U.S.N

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

Third Semester, B.E. - Electrical and Electronics Engineering Semester End Examination; March / April - 2022 Analog Electronic Circuits

Time: 3 hrs Max. Marks: 100

Course Outcomes

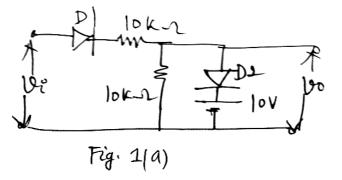
The Students will be able to:

CO1: Analyze and design Diode and Transistor circuit such as Clippers, Clampers, Voltage Multipliers and Amplifiers.

CO2: Analyze and design two port hybrid equivalent model for BJT amplifier and Various BJT Oscillator Circuits.

CO3: Analyze the effect of negative feedback in transistor amplifier.

CO4: Analyze and design various Power amplifier circuits and study the effect of distortions on Power amplifier.


CO5: Analysis of J-FET and MOSFET Circuit.

Note: I) PART - A is compulsory. Two marks for each question.

II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for Maximum of 18 marks from each unit.

Q. No.	Questions I : PART - A	Marks 10	BLs COs POs
I a.	Draw the circuit of series clipper to clip the input sinusoidal signal	2	L1 CO1 PO1
	below V_R . Sketch the input and output waveforms.	2	LI COITOI
b.	Write the h-parameter equations for common base mode and hence draw its	2	L2 CO2 PO2
	h-parameter model.	2	L2 CO21 O2
c.	State any two merits of negative feedback amplifier.	2	L3 CO3 PO1
d.	State any two features of Class A and Class B power amplifiers.	2	L3 CO4 PO4
e.	Show that the amplification factor in JFET is given by $\mu = r_d \times g_m$.	2	L2 CO5 PO2
	II : PART - B	90	
	UNIT - I	18	

1 a. For the clipping circuit as in Fig. 1(a) draw the transfer characteristics draw input and output voltage waveforms. Assume $V_i = 50 \sin \omega t$.

9 L1 CO1 PO1

b. For the voltage divider bias circuit $R_C = 1 \text{ k}\Omega$, $R_E = 470 \Omega$, $R_I = 10 \text{ k}\Omega$,

 $R_2 = 5 \text{ k}\Omega$, $V_{CC} = 10 \text{ V}$, $\beta = 100$. Find the location of Q point (I_C, V_{CE}) .

9 L3 CO1 PO3

Draw the circuit diagram.

- c. Explain the high frequency responses of an amplifier with circuit diagram and obtain gain and phase response with diagram.
- 9 L3 CO1 PO4

18

UNIT-II

- 2 a. For the transistor amplifier in general form, derive expression for A_I , Z_i , A_V and Z_0 .
- 9 L3 CO1 PO4
- b. A single stage common emitter amplifier has $R_S = 1 \text{ k}\Omega$, $R_I = 50 \text{ k}\Omega$, $R_2 = 2 \text{ k}\Omega$, $R_E = 500 \Omega$, $R_C = 1 \text{ k}\Omega$, $R_L = 1.2 \text{ k}\Omega$, $C_E = 47 \mu\text{F}$, $h_{ie} = 1.1 \text{ k}\Omega$, $h_{fe} = 50$, $h_{oe} = 25 \mu A/V$ and $h_{re} = 2.5 \times 10^{-4}$. Calculate A_I , Z_i , A_V and A_{VS} . Draw the circuit diagram.
- L1 CO2 PO2
- c. Explain the working of RC phase shift oscillator. State expressions for f_0 and h_{fe} min of transistor. If $f_0 = 1$ kHz, C = 0.1 μ F, calculate the resistance R of the above oscillator circuit.
- 9 L1 CO2 PO2

UNIT - III

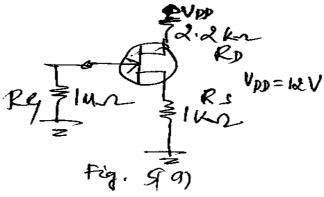
- 18
- 3 a. Explain the concept of feedback. Draw the required diagrams.

- L2 CO3 PO3 9
- For the voltage series feedback amplifier, obtain expressions for R_{if} and R_{of} .
- 9 L2 CO3 PO3

L1 CO3 PO1

- For the current series feedback amplifier $R_L = 2.2 \text{ k}\Omega$, $R_E = 1.2 \text{ k}\Omega$, $R_S = 1 \text{ k}\Omega$, calculate; β , D, G_m , A_{VF} , R_{if} , and R_{of} . Draw the circuit diagram. Given $h_{fe} = 50$, $h_{ie} = 1.1 \text{ k}\Omega$.

9


18

- **UNIT IV**
- 4 a. Explain class 'B' power amplifier circuit with related waveform and obtain L1 CO2 PO2 conversion efficiency.
 - b. Explain harmonic distortion in power amplifiers. Derive an expression for 9 L2 CO4 PO3 II harmonic distortion.
 - c. A class-B push-pull amplifier is operated with $V_{CC} = 10 \text{ V}$ and $R_L = 5 \Omega$, determine the maximum output power, power ratings of transistors and dc 9 L1 CO3 PO1 input power. Draw the circuit diagram also.

18

5 a. In JFET, show that $g_m = g_{mo} \left(1 - \frac{v_{gs}}{v_p} \right)$. For the circuit of Fig. 5(a) determine

 V_{GSQ} , I_{DQ} , V_{DS} , V_S , V_D . Assume $I_{DSS} = 8$ mA, $V_P = -4$ V, $V_{DD} = 2$ V.

L2 CO3 PO1

- Explain the construction and working of *n*-channel D-MOSFET.
- L3 CO1 PO1

Explain the construction and working of P-channel J-FET.

L1 CO2 PO2