U.S.N

\square

P.E.S. College of Engineering, Mandya - 571401
 (An Autonomous Institution affiliated to VTU, Belagavi)
 Third Semester, B.E. - Electrical and Electronics Engineering
 Semester End Examination; March / April - 2022
 Digital Electronics Circuits

Time: 3 hrs
Max. Marks: 100

Course Outcomes

The Students will be able to:
CO1: To analyze the different switching algebra theorems and apply them for logic functions.
CO2: Explain and analyze the Karnaugh map for a few variables \& combinational circuits: half adders / subtractors, encoders / decoders.
CO3: Explain and analyze the bistable element and the different latches and flip flops.
CO4: Explain and analyze sequential circuits, like counters and shift registers.
CO5: Explain and analyze the concepts of A / D and D / A converters.
Note: I) PART - A is compulsory. Two marks for each question.
II) PART - B: Answer any Two sub questions (from a, b, c) for Maximum of $\mathbf{1 8}$ marks from each unit.
Q. No.

Questions

I : PART - A

Marks $\mathbf{1 0}$	BLs	COs	POs
2	$\mathrm{~L} 1,2$	CO 1	$\mathrm{PO} 1,2$
2	$\mathrm{~L} 1,2$	CO 1	$\mathrm{PO} 1,2$
2	$\mathrm{~L} 1,2$	CO 2	$\mathrm{PO} 1,2$
2	$\mathrm{~L} 1,2$	CO 3	$\mathrm{PO} 1,2$
2	$\mathrm{~L} 1,2$	CO 4	$\mathrm{PO} 1,2$

II : PART - B

90UNIT - I18

1 a. Design a three input, one output combinational circuit, which has an output to ' 1 ' when majority of input's are logic 1 and has an output 9

9 L1,2,3 CO1 PO1,2 equal to ' 0 ' when majority of its inputs are at logic 0 .
b. For the Boolean function $F=a b+\bar{a} b+\bar{a} c$,
i) Implement it using basic gates
9 L1,2,3 CO1
PO1,2
ii) Implement using NAND only
c. Express the following functions as mentioned:
i) $\bar{a} b+b c$ in standard SOP form
$9 \mathrm{~L} 1,2 \quad \mathrm{CO} 1$
PO1,2
ii) $W \cdot(W+X+Y)$ in standard POS form

> UNIT - II

18
2 a. Minimize the following expression in SOP form using K-Map
i) $f(a, b, c, d)=\sum m(0,1,4,8,9,10)+d(2,11) \quad 9 \quad$ L1,2,3 CO2 PO1,2
ii) $f(a, b, c, d)=\sum m(1,2,3,5,6,7,11,12,13,14,15)$
b. Minimize the expression using Quine Mccluskey method,
$Y=\overline{A B} \bar{C} \bar{D}+\overline{A B} \overline{C D}+A B \bar{C} \bar{D}+A B \overline{C D}+A \bar{B} \overline{C D}+\bar{A} \overline{B C} \bar{D} \quad 9 \quad \mathrm{~L} 1,2,3 \quad \mathrm{CO} 2 \quad \mathrm{PO} 1,2$
c. Write a note on look ahead carry adder with a help of Boolean function and logic diagram.

UNIT - III
3 a . Design the following function using 3 to 8 decoders:
$f_{1}(a, b, c, d)=\sum(0,4,8,10,14,15)$ and
$f_{2}(a, b, c, d)=\sum(3,7,9,13)$
b. Design Octal to Binary Encoder.
c. Convert SR flip flop to JK flip flop.

UNIT - IV

4 a. A sequential circuit with two D-flip flop A and B and input X and output Y is specified by the following next state and output equation, $A(t+1)=A X+B X, B(t+1)=\overline{A X}, Y=(A+B) \bar{X}$.

Derive the state diagram.
b. Design a synchronous decade counter using D-flip flop.
c. Explain shift left serial in serial out shift register.

UNIT - V
5 a. Explain successive approximation ADC with neat diagram.
b. With the help of a neat diagram, explain the working of R-2R ladder network.
c. Explain with logic circuit, two input NAND gate CMOS circuit.

9 L1,2 CO2 PO1,2

18

9 L1,2,3 CO2 PO1,2,12

9 L1,2,3 CO3 PO1,2,12
9 L1,2,3 CO3 PO1,2,12 18

9 L3 L1,2,3 PO1,2,3,12

9 L3 L1,2,3 PO1,2,3,12
9 L4 L1,2,3 PO1,2,10,12 18

9
L1,2,3 CO5 PO1,2,3,12
9 L1,2,3,4 CO5 PO1,2,3,12

9 L1,2,3 CO5 PO1,2,3,12

