U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)
Third Semester, B.E. - Electrical and Electronics Engineering

Semester End Examination; March / April - 2022 Power Plant Engineering

Time: 3 hrs Max. Marks: 100

Course Outcomes

The Students will be able to:

- CO1: Understand the conceptual working principles of conventional source of electric power generation.
- CO2: Explain the detail descriptions of hydroelectric plants, nuclear power plants and gas power plants.
- CO3: Analyze the power generation using non-conventional energy sources.
- CO4: Understand the concept of load curves, and different tariff.
- CO5: Understand the concept of ground and power factor.

Note: I) **PART - A** is compulsory. **Two** marks for each question.

II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for Maximum of 18 marks from each unit.

Q. No.	Questions	Marks			POs
I a.	I : PART - A Define hydrograph and mass curve.	10 2	L1	CO1	PO2
b.	List any four advantages of diesel electric station.	2	L1	CO2	PO2
c.	Mention the advantages of non-conventional energy sources.	2	L1	CO3	PO2
d.	Define load factor and diversity factor.	2	L1	CO4	PO2
e.	What are the methods adopted in grounding system?	2	L1	CO5	PO2
	II : PART - B	90			
	UNIT - I	18			
1 a.	With a neat schematic diagram, describe the steam power station.	9	L2	CO1	PO2
b.	Classify the hydro-electric power plants according to available head and	9	1.2	CO2	PO2
	discuss them in brief.		L2	CO2	102
c.	Explain the general arrangement and operation of a hydroelectric	9	1.2	CO1	DO2
	power plant.	9	L2	COI	102
	UNIT - II	18			
2 a.	Explain the main parts of nuclear reactor with a neat sketch.	9	L2	CO2	PO2
b.	With a neat diagram, describe main components of diesel electric plant.	9	L2	CO2	PO2
c.	What is the classification of reactor? Explain BWR with diagram.	9	L2	CO2	PO2
	UNIT - III	18			
3 a.	Describe the methods of power factor improvement.	9	L2	CO5	PO2
b.	A power station has an installed capacity of 210 MW. The capital cost				
	of station is Rs. 1000/MW. The fixed cost is 13% of the cost of				
	investment. On full load at 100% load factor, the variable cost of the				
	station per year is 1.3 times the fixed cost. Assume no reserve capacity	9	L4	CO4	PO2
	and variable cost to be proportional to the energy produced;				
	find the cost of generation per KWH at load factor of 100% and 50%.				
	Comment on results. Contd 2				

P18EE35 Page No... 2

c.	A generating station supplies the following loads to various consumers:				
	Industrial consumer = 750 MW				
	Commercial establishment = 350 MW				
	Domestic power = 10 MW				
	Domestic light = 50 MW			CO4	DO2
	If the maximum demand on the station is 1000 MW and the number of	9	L4	CO4	PO2
	generated per year is 50 x 10 ⁵ , determine;				
	i) The diversity factor				
	ii) Annual load factor				
	iii) Demand factor				
	UNIT - IV	18			
4 a.	With a neat diagram, write a brief note on harnessing the tidal energy.	9	L2	CO3	PO2
b.	Explain the main parts of wind power plant. Mention advantages and	9	1.2	CO3	DO2
	disadvantages of wind power.	9	L	COS	FO2
c.	Explain briefly the various non-conventional method of power	9	13	CO3	PO2
	generation.	9	L3	CO3	102
	UNIT - V				
5 a.	Write a short note on:				
	i) Resonant grounding	9	L2	CO5	PO3
	ii) Reactance grounding				
b.	Describe the parallel operation of Inter-Connected system.	9	L2	CO5	PO3
c.	Discuss the phase angle control when the stations are interconnected.	9	L3	CO5	PO3

* * *