U.S.N

\square

P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belagavi)
Seventh Semester, B.E. - Electrical and Electronics Engineering
Semester End Examination; February - 2022
Computer Techniques in Power Systems
Time: 3 hrs
Max. Marks: 100

Course Outcomes

The Students will be able to:
CO1: Form the bus admittance matrix for the given power system network by singular transformation method.
CO2: Develop general power flow equations (PFE) for an n-bus power system
CO3: Determining the solution of PFE using algorithms such as Gauss-Seidel and Newton-Raphson methods.
CO4: Design a power system by optimizing the overall operating cost subject to pre-specified constraints.
CO5: Determine the transient stability of a power system
Note: I) PART - A is compulsory. Two marks for each question.
II) PART - B: Answer any Two sub questions (from a, b, c) for Maximum of $\mathbf{1 8} \mathbf{~ m a r k s ~ f r o m ~ e a c h ~ u n i t . ~}$

Q. No.	Questions I : PART - A	$\begin{gathered} \text { Marks } \\ 10 \end{gathered}$	BLs	COs	POs
I a.	List any two properties of a tree.	2	L1	CO1	PO1
	Write the generalized algorithmic equations to form $Y_{b u s}$ by inspection method.	2	L1	CO 2	PO1
c.	List the advantages of NR method over GS method.	2	L1	CO 3	PO2
d.	Write the coordination equation for economic scheduling of generation with transmission loss considered.	2	L2	CO 4	PO2
e.	List any two methods of solving the swing equation.	2	L1	CO 5	PO1
	II : PART - B	90			
	UNIT - I	18			

1 a . Construct branch path incidence matrix, element node and cut set incidence matrices for the oriented graph shown in Fig. 1(a). Choose $1,2,3,4$ as tree branches.

b. Define the following terms with an illustrative example:
i) Oriented graph
ii) Tree
9 L1,2 CO1
PO1
iii) Basic cut set incidence matrix
iv) Basic loop incidence matrix
c. For the oriented graph shown in Fig. Q1(c), obtain the matrices $\hat{\mathrm{A}}, \mathrm{A}$, K, B and \hat{B}. Choose 1, 2, 3 as tree branches.

$9 \quad \mathrm{~L} 2 \mathrm{CO} 1 \mathrm{PO} 2$

18

2 a . Derive an expression for obtaining the bus admittance and bus impedance matrices ($Y_{b u s}$ and $Z_{b u s}$) by the singular transformation analysis.
b. Form $Z_{\text {bus }}$ for the power system shown in Fig. 2(b) by adding the elements in the sequence $4-1,1-2,1-3,4-3$ by selecting node 4 as the reference. The pu. reactance of all lines are indicated on the diagram.

c. For the oriented graph with data as in Fig. Q2(c). Obtain $Y_{\text {bus }}$ by singular transformation. Verify the answer by rule of inspection. The line impedance values are as marked in pu.

(a) Ref.

Fig Q. 2(c)
UNIT - III
3 a . Explain the procedural steps to be followed to find the voltages at PQ and PV buses of given system by using GS load flow analysis by giving corresponding generalized equations.
b. Using $Y_{\text {bus }}$ based GS method of LFA for the system shown in Fig. Q3(b). Compute voltage at bus 2 at the end of first iteration.

Assume $\alpha=1$.

9 L3,4 CO3
PO2,5

9 L2,3 CO3
PO1,2

18

4 a . Derive the condition for optimal scheduling of thermal plants considering losses. Explain the importance of penalty factor.
b. What are B-coefficients? Obtain the general expression for B-coefficients.
c. A two bus system is shown in Fig. Q4(c), if a load of 125 MW is transmitted from plant 1 to the load, a loss of 15.625 MW is incurred. Determine the generation schedule and the load demand; if the cost of received power is Rs. 24 /MWhr. Solve the problem using coordination equations and penalty factor method. The incremental production cost of plants are,
$\frac{d F_{1}}{d P_{1}}=0.025 P_{1}+15 \quad ; \quad \frac{d F_{2}}{d P_{2}}=0.05 P_{2}+20$

$\operatorname{Fog} Q .4$ (c)
UNIT - V
5 a . With necessary equations, describe the solution of swing equation using modified Euler's method.
b. Giving the algorithmic equations required by the method-1 and method-2 of point-by-point solution technique discuss on the solution procedure for the swing equation obtain during transient stability studies.
c. Explain the Runge-Kutta method for solving a swing equation of Synchronous machines.

