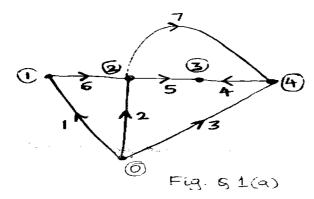


The Students will be able to:

CO1: Form the bus admittance matrix for the given power system network by singular transformation method. CO2: Develop general power flow equations (PFE) for an n-bus power system

Course Outcomes

CO3: Determining the solution of PFE using algorithms such as Gauss-Seidel and Newton-Raphson methods. CO4: Design a power system by optimizing the overall operating cost subject to pre-specified constraints.


CO5: Determine the transient stability of a power system

Note: I) PART - A is compulsory. Two marks for each question.

II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for Maximum of 18 marks from each unit.

I a. List any two properties of a tree. 2 L1 CO1 PO1 b. Write the generalized algorithmic equations to form Y _{bus} by inspection method. 2 L1 CO2 PO1 c. List the advantages of NR method over GS method. 2 L1 CO3 PO2 d. Write the coordination equation for economic scheduling of generation with transmission loss considered. 2 L2 CO4 PO2 e. List any two methods of solving the swing equation. 2 L1 CO5 PO1 II : PART - B 90 III : PART - II III III	Q. No.	Questions I : PART - A	Marks 10	BLs	COs	POs
c. List the advantages of NR method over GS method. 2 L1 CO2 PO1 c. List the advantages of NR method over GS method. 2 L1 CO3 PO2 d. Write the coordination equation for economic scheduling of generation with transmission loss considered. 2 L2 CO4 PO2 e. List any two methods of solving the swing equation. 2 L1 CO5 PO1 II : PART - B	I a.	List any two properties of a tree.	2	L1	CO1	PO1
 d. Write the coordination equation for economic scheduling of generation with transmission loss considered. e. List any two methods of solving the swing equation. II: PART - B 	b.		2	L1	CO2	PO1
abbbc2L2CO4PO2with transmission loss considered.e.List any two methods of solving the swing equation.2L1CO5PO1II: PART - B9090100100100100	c.	List the advantages of NR method over GS method.	2	L1	CO3	PO2
II : PART - B 90	d.		2	L2	CO4	PO2
	e.	List any two methods of solving the swing equation.	2	L1	CO5	PO1
UNIT - I 18		II : PART - B	90			
		UNIT - I	18			

Construct branch path incidence matrix, element node and cut set 1 a. incidence matrices for the oriented graph shown in Fig. 1(a). Choose 1, 2, 3, 4 as tree branches.

9 CO1 **PO2** L2

b. Define the following terms with an illustrative example:

i) Oriented graph

ii) Tree

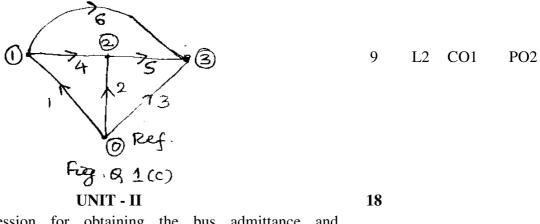
- 9 **PO1** L1,2 CO1
- iii) Basic cut set incidence matrix iv) Basic loop incidence matrix

L1,2 CO2

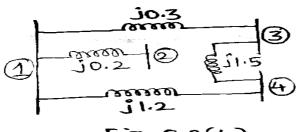
L2.3 CO2

9

PO₂

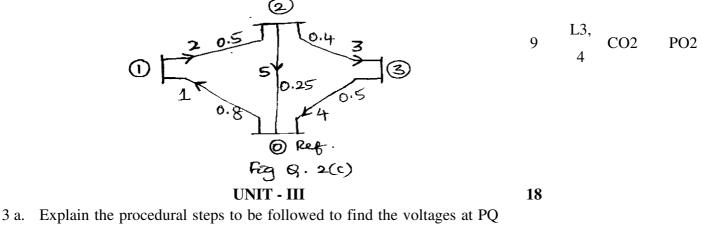

PO2

PO2,5


P18EE71

c. For the oriented graph shown in Fig. Q1(c), obtain the matrices \hat{A} , A,

K, B and \hat{B} . Choose 1, 2, 3 as tree branches.



- 2 a. Derive an expression for obtaining the bus admittance and bus impedance matrices (Y_{bus} and Z_{bus}) by the singular transformation 9 analysis.
 - b. Form Z_{bus} for the power system shown in Fig. 2(b) by adding the elements in the sequence 4 1, 1 2, 1 3, 4 3 by selecting node 4 as the reference. The p.u. reactance of all lines are indicated on the diagram.

Fig. 6, 24.5 c. For the oriented graph with data as in Fig. Q2(c). Obtain Y_{bus} by singular transformation. Verify the answer by rule of inspection. The

line impedance values are as marked in p.u.

- and PV buses of given system by using GS load flow analysis by 9 L2,3 CO3 giving corresponding generalized equations.
 - Contd... 3

Page No... 3

L2,3 CO3

L2.3 CO4

L2.3 CO4

L3,4 CO4

18

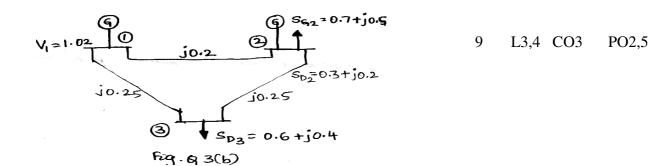
9

9

18

PO1,2

PO1,2


PO1.2

PO2,5

P18EE71

b. Using Y_{bus} based GS method of LFA for the system shown in Fig. Q3(b). Compute voltage at bus 2 at the end of first iteration.

Assume $\alpha = 1$.

c. Explain Newton-Raphson method of LFA in polar form for a system
 9 consisting of P-Q buses only.

UNIT - IV

- 4 a. Derive the condition for optimal scheduling of thermal plants considering losses. Explain the importance of penalty factor.
 - b. What are B-coefficients? Obtain the general expression for B-coefficients.
 - c. A two bus system is shown in Fig. Q4(c), if a load of 125 MW is transmitted from plant 1 to the load, a loss of 15.625 MW is incurred. Determine the generation schedule and the load demand; if the cost of received power is Rs. 24 /MWhr. Solve the problem using coordination equations and penalty factor method. The incremental production cost of plants are,

$$\frac{dF_1}{dP_1} = 0.025P_1 + 15 \quad ; \quad \frac{dF_2}{dP_2} = 0.05P_2 + 20$$

 P_1 $F_2 \otimes F_2 \otimes F_2$

5 a.	With necessary equations, describe the solution of swing equation	9	123	CO5	PO1.2
	using modified Euler's method.	7	L2,3	005	101,2
b.	Giving the algorithmic equations required by the method-1 and				
	method-2 of point-by-point solution technique discuss on the solution	9	L2,3	CO5	PO1,2,12
	procedure for the swing equation obtain during transient stability	9			
	studies.				
c.	Explain the Runge-Kutta method for solving a swing equation of	9	L2,3	CO5	PO1,2,12
	Synchronous machines.	9			