	<i>U.S.N</i>				
	P.E.S. College of Engineering, Mandya - (An Autonomous Institution affiliated to VTU, Belagar Fifth Semester, B.E Electrical and Electronics Eng Semester End Examination; February / March - Power Transmission and Distribution	_{vi)} gineerin 2022	ıg	<u> </u>	
Time: 3		Ν	Iax. M	larks:	100
CO1: R CO2: S CO3: C CO4: A	Course Outcomes dents will be able to: Pecognize the structure and operation of electricity generation, transmission and its impact on the society and Environment. Solve problems involving modeling, Mechanical and electrical design and power transmission lines. Calculate the capacitance and stress Levels To solve simple designing problem underground cables. nalyze the importance of overhead and underground transmission system.	performa	nce evi	aluation	n of
	PART - B : Answer any <u>Two</u> sub questions (from a, b, c) for Maximum of 18 m	a rks fron	1 each 1	unit.	
Q. No.	Questions	Marks	BLs	COs	PO
	I : PART - A	10			
I a.	What are the advantages of high voltage transmission?	2	L1	CO1	PO
b.	Write a short note on suspension insulator.	2	L1	CO2	PC
c.	Define the term mutual GMD.	2	L1	CO3	PC
d.	Define efficiency and regulation of transmission lines.	2	L1	CO4	PO
e.	Explain ring main distribution.	2	L1	CO5	PO
	II : PART - B	90			
	UNIT - I	18			
1 a.	Discuss the effect of increase of transmission voltage on;				
	i) Volume of copper used	9	L2	CO1	PC
	ii) Line loss and regulation				
	iii) Efficiency of transmission line				
b.	Deduce the expressions for Sag and tension, which are supported by			~ ~ .	
	the towers situated at equal level taking into account the wind and	9	L2	CO1	PO
	ice loadings.				
c.	An overhead transmission line at a river crossing is supported from				
	two towers at heights of 50 m and 100 m above the water level.	9	L3	CO1	PO2
	The horizontal distance between the towers being 400 m. If the maximum allowable tension is 1800 kg and the conductor weights 1				
	maximum allowable tension is 1800 kg and the conductor weights 1 kg/m find the clearance between the conductor and water at a point				
	kg/m, find the clearance between the conductor and water at a point mid-way between the towers.				
	וווע-way טכנשככוו נווכ נטשכוא.				

Page No... 1

P18EE551		Page No 2			
UNIT - II		18			
2 a.	Prove that the potential distribution across the string of insulators is not uniform (Consider four insulators in the string).	9	L2	CO2	PO2
b.	What is meant by grading of a cable? Explain the two methods of grading.	9	L2	CO2	PO2
c.	A 3-phase, 3-core, metal sheathed cable gave the following results on				
	test for capacitance:				
	I) Capacitance between two conductors bunched with the sheath and				
	third conductor 0.5 μF/km				
	II) Capacitance between bunched conductors and sheath 0.825 μ F/km.				
	Calculate the capacitance;	9	L3	CO2	PO3
	i) Between any two conductors				
	ii) Between any two bunched conductors and the third conductor,				
	if the sheath is insulated				
	iii) Find the charging current/phase/km when it is connected to				
	20 kV, 50 Hz supply				
	UNIT - III	18			
3 a.	Calculate the inductance of a 3¢ lines with equilateral, symmetrical	9	L4	CO3	PO2
	spacing.				
b.	Obtain an expression for the capacitance of a 3-phase unsymmetrically spaced transmission line.	9	L3	CO3	PO2
c.	Calculate the loop inductance/km of 1-¢ transmission line consisting				
	of 2 parallel conductors 1.5 m apart and 1.5 cm in diameter. Calculate also the reactance of the transmission line if it is operating at a	9	L3	CO3	PO3
	frequency of 50 Hz.				
	UNIT - IV	18			
4 a.	Derive an expression for ABCD constants of a medium transmission line using nominal T-method. Show that $AD - BC = 1$.	9	L4	CO4	PO2
b.	Define Ferranti effect. Obtain equivalent π circuit model of a long transmission line.	9	L4	CO4	PO2
c.	A 100 km long, 3-phase, 50 Hz transmission line has				
	resistance/phase/km = 0.1Ω , reactance/phase/km = 0.5Ω ,				
	suspectance/phase/km = 10×10^{-6} \mathbf{c} . If the line supplies load of				
	20 MW at 0.9 pF lagging at 66 kV at the receiving end calculate;	9	L3	CO4	PO3
	i) Sending end power factor ii) Regulation				
	iii) Transmission efficiency, assume a nominal π circuit for the line.				
	,				

P18EE551			Page No 3		
	UNIT - V	18			
5 a.	List out any four advantages and disadvantages of corona. Explain the	9	L2	CO5	PO2
	theory of corona formation.		L	005	102
b.	What is distribution system? Write a short note on;				
	i) Feeders	9	L2	CO5	PO2
	ii) Distributors				
	iii) Service mains				
	iv) Radial distribution				
c.	Find the critical disruptive voltage and the visual critical voltage for				
	general and local corona on a 3-phase overhead transmission line,	9	L3	CO5	PO3
	consisting of three stranded copper conductors spaced 2.5 m apart at				
	the corners of an equilateral triangle. Air temperature and pressure are				
	21°C and 73.6 cm Hg respectively. The conductor dia irregularity				
	factor and surface factors are 10.4 mm, 0.85, 0.7 and 0.8 respectively.				

* * * *