

P18EE0751			Page No 2		
b.	I) A lamp of 600 watt and having a MSPC of 1200 is suspended at a				
	height of 3 m above the ground. Find;				
	i) The illumination at a point on the ground directly below the lamp	4	L2	CO2	PO3
	ii) Illumination at a point 3m away from the point which is directly	4	L2	02	105
	below the lamp				
	iii) Luminous efficiency of the lamp				
	II) Explain the laws of illumination.	5	L2	CO2	PO3
c.	Explain the construction and working principle of Fluorescent lamp.	9	L2	CO2	PO3
	UNIT - III	18			
3 a.	Describe briefly an ideal traction system scheme of traction and	9 L2	12	CO3	PO3
	mention its merits and demerits)	L2	005	105
b.	Explain clearly the systems of railway electrification.	9	L2	CO3	PO3
c.	Explain the following:				
	i) Electric trains	9	L2	CO3	PO3
	ii) Tramways)	L	005	105
	iii) Trolley buses				
	UNIT - IV	18			
4 a.	Explain Electric traction speed time curve and mechanism of	9	L2	CO4	PO3
	train movement.	,	112	001	105
b.	Describe briefly the various factors affecting energy consumption.	9	L2	CO4	PO3
c.	A train is required to run between two steps which one 4 km apart				
	with a schedule speed of 45 kmph and the duration of stops being				
	30 sec. The braking retardation is 3 kmphps. Calculate the	9	L2	CO4	PO3
	acceleration, if the ratio of maximum speed to average speed is 1.25.				
	Assume trapezoidal speed-time curve.				
	UNIT - V	18			
5 a.	Explain briefly the plugging and regenerative braking as applied to	9	L2	CO5	PO3
	the traction motor.	1		005	105
b.	Describe briefly the desirable properties of traction motors.	9	L2	CO5	PO3
c.	Explain briefly the regenerative braking of an AC motor.	9	L2	CO5	PO3

* * * *