

CO4: Explain the role and importance of AGV, CAPP and MRP.

CO5: Explain the different elements of CNC, the steps involved in writing the CNC part programming and the concept of robots, robot configuration and different robot motion.

<u>Note</u>: I) PART - A is compulsory. Two marks for each question. II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for Maximum of 18 marks from each unit.

Q. No.	Questions PART - A	Marks 10	BLs	COs
I a.	List any two features of fixed automation.	2	L1	CO1
b.	What are the objectives of Line balancing?	2	L1	CO2
c.	Define the ideal cycle time in single station assembly with a mathematical relation.	2	L1	CO3
d.	What are the objectives of capacity requirements planning?	2	L1	CO4
e.	Mention any two types of seasons used in industrial robot.	2	L1	CO5
	II: PART - B UNIT - I	90 18		
1 a.	i) Define Automation and CIM with the aid of conceptual model of manufacturing.	6	L1	CO1
	ii) What are the different reasons for industrial automation?	3	L1	CO1
b.	Explain the following: i) Utilization and Availability ii) Manufacturing lead time iii) Work in process	9	L2	CO1
c.	i) Explain in detail control functions in automated flow time.	6	L2	CO1
	ii) What are the objectives of the use of flow line automation?	3	L1	CO2

P18IP553		Pa	Page No 2	
UNIT - II		18		
2 a.	i) What is storage buffer? What are the reasons for implementing storage unit	4	L1	CO2
	in an automated production line?			
	ii) Write a short note on the following:			
	I) Precedence diagram	5	L1	CO2
	II) Minimum rational work element			
b.	The company is considering replacing one of the current manual work			
	stations with an automatic work head on a 10-station production line.			
	The current line has six automatic stations and four manual stations that			
	is proposed for replacement. Implementing the proposal would allow the			
	cycle time to be reduced to 24 seconds. The new station would cost ` 10/ min.			
	Other cost data $C_w = 11/min$, $C_{as} = 7.5/min$, $C_{at} = 9/min$. Breakdowns	9	L2	CO2
	occur at each automated station with probability $P = 0.01$. The new automated	9		
	station is expected to have the same frequency of breakdown. Average			
	downtime per occurrence $T_d = 3$ mm. Material cost and tooling cost can be			
	neglected. It is desired to compare the current line with the proposed change			
	on the basis of production rate and cost per price. Assume a yield of 100%			
	good product.			

c. The Demand of the assembly line with its elemental time and precedence is as given below. Construct the precedence diagram and find balance delay by largest candidate rule method. Five worker and stations are required in the solution

Elements	Time (minutes) T _{ek}	Must be proceeded by		
1	0.2	-		
2	0.4	-		
3	0.7	1		
4	0.1	1, 2		
5	0.3	2		
6	0.11	3		
7	0.32	3		
8	0.6	3, 4		
9	0.27	6, 7, 8		
10	0.38	5.8		
11	0.5	9, 10		
12	0.12	11		
UNIT - III				

(cycle time = 1 minute) Table 2(c)

3 a. Explain with neat sketch, different types of automated assembly systems. List any two applications of dial type automated assembly system.

18

9

9

L2 CO3

Contd... 3

P18IP553

b.	A 10-station in-line assembly machine has an ideal cycle time = 6 seconds. The base part is automatically loaded prior to the first station and components			
	are added at each of the stations. The fraction defect rule at each of the			
	10 station is $q = 0.01$ and the probability that a defect will jam is $m = 0.5$			
	when a jam occurs, the average downtime is 2 min. Cost to operate the			
	assembly machine is `50/ min. Other costs are ignored. Determine :	9	L3	CO3
	i) Average production rate of all assemblies			
	ii) Yield of good assemblies			
	iii) Average production rate of good product			
	iv) Uptime efficiency of the assembly machine			
	v) Cost per unit			
c.	With a neat sketch, explain part feeding and delivery systems.	9	L2	CO3
	UNIT - IV	18		
4 a.	What are the difference between retrieval and generative computer aided	9	L1	CO4
	process planning? Which is better? Explain with example.	9	LI	CO4
b.	i) List the objectives of material requirements planning.	3	L1	CO4
	ii) Explain the inputs to material requirement planning.	6	L2	CO4
c.	List the types of AGV's and write a note on the following technology/			
	methods to adopt to AGV's	9	L1	CO4
	i) Vehicle guidance and Routing	,	D 1	001
	ii) System management			
	UNIT - V	18		
5 a.	i) Briefly explain the elements of CNC.	6	L2	CO5
	ii) List the advantages and disadvantages of CNC.	3	L1	CO5
b.	With a neat sketch, explain any three robot physical configuration.	9	L2	CO5
с.	i) Explain lead through method of robot programming.	4	L2	CO5
	ii) Mention the different types of robot grippers.	2	L1	CO5
	iii) List the industrial applications of robot.	3	L1	CO5

* * * *