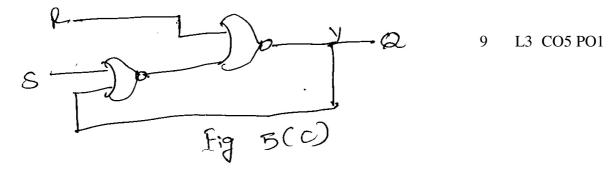

P18IS32	,		Page	e No.	. 1
	U.S.N				
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) Third Semester, B.E Information Science and Engineering Semester End Examination; March / April - 2022 Digital Design					
Tune. 5	Course Outcomes	тах	ma	11.5.	100
CO1: Ap CO2: An CO3: De CO4: De CO5: An <u>Note</u> : I)	ents will be able to: by the principles of Boolean algebra/K - Map to manipulate and minimize logic ex- alyze and design Arithmetic Circuits and Data processing Circuits. sign different units that are elements of typical computer's CPU using VHDL. sign logic circuits using flip-flops/latches/registers. alyze and design Asynchronous and Synchronous Sequential circuits. PART - A is compulsory. Two marks for each question. PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for Maximum of 18 marks		_		
Q. No.	Questions I : PART - A	Marks 10	s BLs	COs	POs
I a.	Draw the logic circuit for the Boolean expression $Y = AB' + A'B$.	2	L1	C01	PO1
b.	Draw the truth table for 2:4 decoder.	2	L1	CO2	PO1
с.	Write the excitation table of JK flip flop.	2	L1	CO3	PO1
d.	Write the truth table of 4-bit Johnson counter	2	L1	CO4	PO1
e.	Write the state diagram of D flip flop.	2	L1	CO5	PO1
	II : PART - B	90			
1.	UNIT - I	18			
1 a.	Perform the following operations (show the step by step calculation) i) $(0.8125)_{10} = ()_2$ ii) $(29.45)_{10} = ()_8$ iii) $(0.438)_{10} = ()_2$	9	L3	CO1	PO1
b.	 iii) (0.A38)₁₆ = ()₂ i) Draw the AND, OR, NOT gates using NAND gates. 				
υ.	ii) Simplify the expression using <i>K</i> -Map method,	9	13	C01	PO1
	$F = (A, B, C, D) = \sum m(3, 5, 12, 13) + d(7, 8, 10, 11)$)		001	101
c.	Write the truth table and logic circuits for the following Boolean	l			
	expression:				
	i) $F = (A+B) + C$ ii) $F = (A+B) \cdot C'$	9	L3	CO1	PO2
	iii) $F = AB' + AC$ iv) $F = (A'+B) (A+B')$ v) $F = (A+B)'.C$				
	UNIT - II	18			
2 a.	Simplify the following function using Quine-Mecclusky method,	9	L3	CO^2	PO2
	$F(A, B, C, D) = \sum (2, 6, 8, 9, 10, 11, 14, 15).$,	LJ	002	102
b.	Define decoders. Explain 2:4 decoder using logic gates and design a Full adder circuit using decoder IC.	9	L2	CO2	PO1
	Contd	2			


P18IS32		Page No 2		
c.	Define Multiplexer. Explain 4 to 1 multiplexer with neat circuit diagram.			
	Implement Boolean function $F(A, B, C, D) = \sum (0, 1, 3, 4, 8, 9, 15)$ using	9	L2 CO2 PO1	
	multiplexer.			
	UNIT - III	18		
3 a.	Explain a 4-bit carry look-ahead adder.	9	L2 CO3 PO1	
b.	Explain clocked SR flip flop and JK flip flop with neat circuit diagram and	9	L2 CO3 PO1	
	timing diagram.	9	L2 C03 P01	
c.	Derive the characteristic equation, draw state transition diagram and			
	excitation table of the D and T flip flops. Implement SR flip flop using JK	9	L2 CO3 PO1	
	flip flop.			
	UNIT - IV	18		
4 a.	Explain ring counter and johnson counter in detail.	9	L1 CO4 PO1	
b.	Design an asynchronous decade counter and explain with timing diagram.	9	L2 CO4 PO1	
c.	Design mod-5 synchronous counter using JK flip flop and implement	9	L2 CO4 PO1	
	the same.	9	L2 C04 F01	
	UNIT - V	18		
5 a.	Design a simple detector circuit for the sequence 011 using Moore model.	9	L2 CO5 PO1	
b.	Reduce state transition diagram (Moore model) of Fig. 5(b) by row			

elimination method and implication table method.

9 L2 CO5 PO1

c. Analyse the Melay model asynchronous sequential circuit of Fig. 5(c) and show its stable state and corresponding outputs and also give the state diagram of this circuit.

* * *