U.S.N

\square

P.E.S. College of Engineering, Mandya - 571401
 (An Autonomous Institution affiliated to VTU, Belagavi)
 Third Semester, B.E. - Information Science and Engineering Semester End Examination; March / April - 2022
 Digital Design

Time: 3 hrs
Max. Marks: 100

Course Outcomes

The Students will be able to:
CO1: Apply the principles of Boolean algebra/K - Map to manipulate and minimize logic expressions/functions.
CO2: Analyze and design Arithmetic Circuits and Data processing Circuits.
CO3: Design different units that are elements of typical computer's CPU using VHDL.
CO4: Design logic circuits using flip-flops/latches/registers.
CO5: Analyze and design Asynchronous and Synchronous Sequential circuits.
Note: I) PART - A is compulsory. Two marks for each question.
II) PART - B: Answer any Two sub questions (from a, b, c) for Maximum of $\mathbf{1 8}$ marks from each unit.
Q. No.

Questions

I : PART - A
I a. Draw the logic circuit for the Boolean expression $Y=A B^{\prime}+A^{\prime} B$.
b. Draw the truth table for $2: 4$ decoder.
c. Write the excitation table of JK flip flop.
d. Write the truth table of 4-bit Johnson counter
e. Write the state diagram of D flip flop.

II : PART - B

2 L1 CO5 PO1

UNIT - I

18
1 a . Perform the following operations (show the step by step calculation)
i) $(0.8125)_{10}=()_{2}$
ii) $(29.45)_{10}=()_{8}$
iii) $(0 . \mathrm{A} 38)_{16}=()_{2}$
b. i) Draw the AND, OR, NOT gates using NAND gates.
ii) Simplify the expression using K-Map method,

9 L3 CO1 PO1

$$
F=(A, B, C, D)=\sum m(3,5,12,13)+d(7,8,10,11)
$$

c. Write the truth table and logic circuits for the following Boolean expression:

9 L3 CO1 PO1
i) $F=(A+B)+C$
ii) $\mathrm{F}=(\mathrm{A}+\mathrm{B}) \cdot \mathrm{C}^{\prime}$
iii) $\mathrm{F}=\mathrm{AB}^{\prime}+\mathrm{AC}$
iv) $\mathrm{F}=\left(\mathrm{A}^{\prime}+\mathrm{B}\right)\left(\mathrm{A}+\mathrm{B}^{\prime}\right)$
v) $\mathrm{F}=(\mathrm{A}+\mathrm{B})^{\prime} . \mathrm{C}$

UNIT - II
2 a. Simplify the following function using Quine-Mecclusky method,
$F(A, B, C, D)=\Sigma(2,6,8,9,10,11,14,15)$.
b. Define decoders. Explain $2: 4$ decoder using logic gates and design a Full adder circuit using decoder IC.
c. Define Multiplexer. Explain 4 to 1 multiplexer with neat circuit diagram. Implement Boolean function $F(A, B, C, D)=\Sigma(0,1,3,4,8,9,15)$ using multiplexer.

UNIT - III
3 a. Explain a 4-bit carry look-ahead adder.
b. Explain clocked SR flip flop and JK flip flop with neat circuit diagram and timing diagram.
c. Derive the characteristic equation, draw state transition diagram and excitation table of the D and T flip flops. Implement SR flip flop using JK flip flop.

UNIT - IV
4 a . Explain ring counter and johnson counter in detail.
b. Design an asynchronous decade counter and explain with timing diagram.
c. Design mod-5 synchronous counter using JK flip flop and implement the same.

UNIT - V

5 a . Design a simple detector circuit for the sequence 011 using Moore model.
b. Reduce state transition diagram (Moore model) of Fig. 5(b) by row elimination method and implication table method.

$$
\text { Fig. } 5(b)
$$

c. Analyse the Melay model asynchronous sequential circuit of Fig. 5(c) and show its stable state and corresponding outputs and also give the state diagram of this circuit.

Le CO PO

L3 CO PO

