\square

P.E.S. College of Engineering, Mandya - 571401
 (An Autonomous Institution affiliated to VTU, Belagavi)
 Third Semester, B.E. - Information Science and Engineering Semester End Examination; March / April - 2022
 Data Structures and Algorithms

Time: 3 hrs
Max. Marks: 100

Course Outcomes

The Students will be able to:
CO1: Understand primitive and derived data structure and Understand Abstract data types, Stacks and recursion.
CO2: Develop and implement linked list.
CO3: Develop programs to implement different queues.
CO4: Understand and create trees.
CO5: Design an algorithm to Sorting Techniques and Searching techniques.
Note: I) PART - A is compulsory. Two marks for each question.
II) PART - B: Answer any Two sub questions (from a, b, c) for Maximum of $\mathbf{1 8}$ marks from each unit.

Q. No.	$\begin{gathered} \text { Questions } \\ \text { I : PART - A } \end{gathered}$	Marks 10	BLs COs POs
I a.	Mention any two applications of stack.	2	L1 CO1 PO1
	Differentiate between static memory and dynamic memory allocation. Give an example for each.	2	L3 CO2 PO1
c.	Mention any two applications of queue.	2	L1 CO3 PO1
d.	Define a Binary search tree.	2	L1 CO4 PO1
e.	Define a Heap. Which data structure is used in implementing it?	2	L1 CO5 PO1
	II : PART - B	90	
	UNIT - I	18	

1 a. Define a stack. Implement Push and Pop operations of stack. An error message to be displayed for stack full () and stack empty () conditions. Also display the contents of stack when prompted by user. Assume stack size to be N.
b. Write an algorithm for conversion of infix expression into postfix expression and also convert the following expressions from infix to postfix;
$9 \quad \mathrm{~L} 1,2 \mathrm{CO} 1 \mathrm{PO} 1$
$9 \quad \mathrm{~L} 3 \mathrm{CO} 1 \mathrm{PO} 1$
i) $(A+B) * C+D /\left(E+F^{*} G\right)+H$
ii) $((A / B-C+D)) *(E-F) * G)$
c. Write the recursive ' C ' routines to implement the following:
i) To find the sum of all digits in integer
ii) To find X^{n} where n may be +Ve or -Ve
iii) To find GCD of two numbers

UNIT - II
2 a . Using dynamic variables and pointer. Write a ' C ' program to construct a SLL consisting of following info in each node:

Job_ID: integer; Job_name: string; Job_type: string
The operation to be supported are:
i) Front insert
ii) Specific node deletion based on Job_ID
iii) Displaying all the nodes in the list
b. Write a ' C ' program using SLL to implement double ended queue. Handle queue empty condition
c. Implement the following functions on a single linked list:
i) Insert at end of list
ii) Delete front of list
iii) Delete at end of list

UNIT - III
3 a. Using the circular linked list data structure, write a program to add two long positive integers. The list can have header node and numbers are entered in normal way. Each node in list contains a single digit of number. The number can be accepted as a string.
b. Define a priority queue. Implement in ' C ' the priority queue. Also mention the applications of priority queue.
c. Write a program, using dynamic variables and pointers to perform the following operations:
i) Construct two ordered singly linked list in ascending order
ii) Merge these two lists into a single ordered list

UNIT - IV

4 a. Define a binary search tree. Explain the tree traversal methods. How deletion is handled in BST? Explain with an example.
b. If the pre-order traversal of BST is $30,20,15,5,18,25,40,35,50,45$, 60. Determine its inorder traversal and postorder traversal. Draw the complete BST.
c. Write a ' C ' program to evaluate a given expression (the operands of expression may all be assumed as single character integer variables. The value of which may be obtained from user separately) using an expression tree.

UNIT - V

5 a. Define a Heap. Implement ' C ' routine to create a Heap. Construct the max heap for the data $35,33,42,10,14,19,27,44,26,31$.
b. Write a ' C ' program to implement address calculation sort.
c. Explain the ' C ' routine of sentinel search with an example.
$9 \quad \mathrm{~L} 2 \mathrm{CO} 2 \mathrm{PO} 3$
$9 \quad \mathrm{~L} 2 \mathrm{CO} 2 \mathrm{PO} 1$

9 L3 CO2 PO3

