P18IS33

P18IS33	3		Pag	e No.	. 1			
	U.S.N							
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) Third Semester, B.E Information Science and Engineering Semester End Examination; March / April - 2022 Data Structures and Algorithms Time: 3 hrs Max. Marks: 100								
Course Outcomes								
 The Students will be able to: CO1: Understand primitive and derived data structure and Understand Abstract data types, Stacks and recursion. CO2: Develop and implement linked list. CO3: Develop programs to implement different queues. CO4: Understand and create trees. CO5: Design an algorithm to Sorting Techniques and Searching techniques. <u>Note</u>: 1) PART - A is compulsory. Two marks for each question. II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for Maximum of 18 marks from each unit. 								
Q. No.	Questions	Marks	BLs	COs l	POs			
	I : PART - A	10						
I a.	Mention any two applications of stack.	2	L1	CO1 I	201			
b.	Differentiate between static memory and dynamic memory allocation. Give an example for each.	2	L3	CO2 I	201			
c.	Mention any two applications of queue.	2	L1	CO3 I	201			
d.	Define a Binary search tree.	2	L1	CO4 I	201			
e.	Define a Heap. Which data structure is used in implementing it?	2	L1	CO5 I	201			
	II : PART - B	90						
	UNIT - I	18						
1 a.	Define a stack. Implement Push and Pop operations of stack. An error message to be displayed for stack full () and stack empty () conditions. Also display the contents of stack when prompted by user. Assume stack size to be <i>N</i> .	9	L1,2	CO1 I	201			
b.	Write an algorithm for conversion of infix expression into postfix expression and also convert the following expressions from infix to postfix; i) $(A+B)*C+D/(E+F*G)+H$ ii) $((A/B-C+D))*(E-F)*G)$	9	L3	CO1 I	201			
c.	Write the recursive 'C' routines to implement the following: i) To find the sum of all digits in integer ii) To find <i>Xⁿ</i> where <i>n</i> may be +Ve or –Ve iii) To find GCD of two numbers	9	L3	CO1 I	201			

P18IS3.	3		Page No 2
	UNIT - II	18	
2 a.	Using dynamic variables and pointer. Write a 'C' program to construct		
	a SLL consisting of following info in each node:		
	Job_ID: integer; Job_name: string; Job_type: string		
	The operation to be supported are:	9	L2 CO2 PO3
	i) Front insert		
	ii) Specific node deletion based on Job_ID		
	iii) Displaying all the nodes in the list		
b.	Write a 'C' program using SLL to implement double ended queue. Handle queue empty condition	9	L2 CO2 PO1
c.	Implement the following functions on a single linked list:	_	
	i) Insert at end of list ii) Delete front of list iii) Delete at end of list	9	L3 CO2 PO3
	UNIT - III	18	
3 a.	Using the circular linked list data structure, write a program to add two		
	long positive integers. The list can have header node and numbers are entered in normal way. Each node in list contains a single digit of	9	L2 CO3 PO2
	number. The number can be accepted as a string.		
b.	Define a priority queue. Implement in 'C' the priority queue. Also	9	L1,3 CO3 PO3
	mention the applications of priority queue.		
c.	Write a program, using dynamic variables and pointers to perform the		
	following operations:	9	L2,3 CO3 PO1
	i) Construct two ordered singly linked list in ascending order		
	ii) Merge these two lists into a single ordered list		
4	UNIT - IV	18	
4 a.	Define a binary search tree. Explain the tree traversal methods. How deletion is handled in BST? Explain with an example.	9	L1,2 CO4 PO1
b.	If the pre-order traversal of BST is 30, 20, 15, 5, 18, 25, 40, 35, 50, 45,		
01	60. Determine its inorder traversal and postorder traversal. Draw the	9	L3 CO4 PO1
	complete BST.	,	
с.	Write a 'C' program to evaluate a given expression (the operands of		
	expression may all be assumed as single character integer variables.		
	The value of which may be obtained from user separately) using an	9	L2 CO4 PO3
	expression tree.		
	UNIT - V	18	
5 a.	Define a Heap. Implement 'C' routine to create a Heap. Construct the		
	max heap for the data 35, 33, 42, 10, 14, 19, 27, 44, 26, 31.	9	L1,3 CO5 PO1
b.	Write a 'C' program to implement address calculation sort.	9	L2 CO5 PO3
c.	Explain the 'C' routine of sentinel search with an example.	9	L2 CO5 PO1