U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

Fifth Semester, B.E. - Information Science and Engineering Semester End Examination; February / March - 2022 Operating System

Time: 3 hrs Max. Marks: 100

Course Outcomes

The Students will be able to:

CO1: Outline the operating system concepts and its functionalities.

CO2: Implementation of various CPU scheduling algorithms and process synchronization using programming languages.

CO3: Identify deadlock Occurrence, deadlock recovery in various OS and outline memory management concepts.

CO4: Compare page replacement algorithms in OS and understand fundamental file concepts.

CO5: Discuss file system structure and implement disk scheduling algorithms.

Note: I) PART - A is compulsory. Two marks for each question.

II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for Maximum of 18 marks from each unit.

Q. No.	Questions I : PART - A	Marks 10	BLs	COs	POs
I a.	What are the advantages of Multiprogramming?	2	L1	CO1	PO1
b.	What is the difference between Semaphore and Monitor?	2	L1	CO2	PO1
c.	What is the difference between Logical address and Physical address?	2	L1	CO3	PO1
d.	What is meant by Thrashing?	2	L1	CO4	PO1
e.	Define superblock.	2	L1	CO5	PO1
	II : PART - B	90			
	UNIT - I	18			
1 a.	List out operating system responsibilities in connection with process and memory management.	9	L1	CO1	PO1
b.	"One set of operating system services provides functions that are helpful to the user". Justify with proper services.	9	L2	CO1	PO1
c.	List and explain the categories of system programs.	9	L2	CO1	PO1
	UNIT - II	18			
2 0	Given the energy shot of the system:				

2 a. Given the snap shot of the system;

Process	Arrival time	Burst time
P1	0	14
P2	3	9
Р3	5	7
P4	7	5

9 L3 CO2 PO2

With the help of Gantt chart. Find;

- I) i) Average waiting time
 - ii) Average turnaround time using SJF and RR algorithm
- II) Find the total number of context switches occurred during RR scheduling when the time slice = 2 ms

b.	Explain n	nutu	al ex	kclus	sion	with resp	ect t	o sv	vap() ins	struction a	nd 7	Γest.	And	set()	9	1.2	CO2	D ∩1
	instructio	n.														9	L2	CO2	roi
c.	Distingui	sh b	etwe	en v	ario	ous thread	mod	dels.	•							9	L2	CO2	PO1
						UI	NIT	- II	I							18			
3 a.	Define De	eadle	ock.	Exp	olair	character	istic	s of	Dea	adlo	ck.					9	L2	CO3	PO1
b.	Solve the following using bankers algorithm with the given snapshot of a									of a									
	system:																		
	Process Allocated		Process	N	/Iaxi	imuı	n	Process	Available										
	11000	A	В	C	D	110003	A	В	C	D	1100033	A	В	C	D				
	P0	0	0	1	2	P0	0	0	1	2	P0	1	5	2	0				
	P1	1	0	0	0	P1	1	7	5	0	P1					9	L3	CO3	PO2
	P2 P3	0	6	5	2	P2 P3	0	6	5	6	P2 P3								
	P4	0	0	1	4	P4	0	6	5	6	P4								
				nter		need mat		0			1 1								
	· -						IIA												
c.	ii) Is the system in a safe state?i) Justify the statement "resource allocation graph with cycle is not the											the							
C.	sufficient condition for deadlock" with an example.										tiic	4							
	ii) Discuss the basic method of segmentation with segmentation hardware										L4	CO3	PO2						
	and neat block diagram.										5								
	and ne	ai o	IOCK	ura	gran		VIT	- 17	J							18			
4 a.	UNIT - IV Write the total no of page faults for the following reference string with 3										10								
	page frame 1, 2, 3, 4, 5, 3, 4, 1, 6, 7, 8, 7, 8, 9, 5, 4, 5, 4,2 using,										9	L3	CO4	PO2					
	i) FIFO			ii) (Opti	mal	ii	i) Ll	RU	alg	orithm								
b.	Write the	pro	oced	ure	to l	nandling t	he j	page	e fai	alt i	n demand	l pa	ging	, wi	th a			G G 4	
	diagram.															9	L2	CO4	POI
c.	List and e	xpla	in t	he b	asic	operation	s of	file	S.							9	L2	CO4	PO1
						U	NIT	` - V	r							18			
5 a.	Suppose that a disk drive has 100 cylinders numbered 0-100 the drive is										e is								
	currently	serv	ing	a r	equ	est at cyl	inde	r 50), tł	ne fo	ollowing	is tł	ne q	ueu	e of				
	pending r	eque	ests	in F	IFO	order 44,	20,	95,	4, 50), 52	2, 47, 61, 8	37, 2	5.						
	Starting from the current head position, what is the total distance that the disk									9	L3	CO5	PO2						
	arm moves to satisfy the pending requests for each of the following disk																		
	schedulin	g alg	gorit	thm	?														
	i) SSTF		ii	i) C-	LO	OK													
b.	Define sw	app	ing.	Exp	olair	swap-spa	ice r	nana	agen	nent	with exar	nple	·.			9	L2	CO5	PO1
c.	Explain different methods used for implementation of directories.									9	L2	CO5	PO1						

P18IS52

Page No... 2